A water-based proof of the Cauchy-Schwartz inequality

September 17, 2019

The standard proof of the inequality of the title may appear a bit dry, and so I am offering one that uses water. Consider n cylindrical cans with different crossectional areas a_{k}; fill the k th can to an arbitrarily chosen height h_{k}. Then open the valves, letting the water level out; the potential energy becomes less: $P_{\text {new }} \leq P_{\text {old }}$, with the equality holding if and only if all the heights are equal at the outset. I claim that this amounts to the Cauchy-Schwartz inequality. What follows is a verification of this claim.

equalized level is given by $\bar{h}=\Sigma a_{k} h_{k} / \Sigma a_{k}$, and the new, smaller potential energy is

$$
\begin{align*}
& \frac{1}{2}\left(\Sigma a_{k}\right) \bar{h}^{2}=\frac{1}{2}\left(\Sigma a_{k} h_{k}\right)^{2} / \Sigma a_{k} \text {. So } P_{\text {new }} \leq P_{\text {old }} \text { amounts to } \\
& \quad\left(\Sigma a_{k} h_{k}\right)^{2} / \Sigma a_{k} \leq \Sigma a_{k} h_{k}^{2}, \text { or }\left(\Sigma a_{k} h_{k}\right)^{2} \leq \Sigma a_{k} h_{k}^{2} \Sigma a_{k} . \tag{1}
\end{align*}
$$

This is the Cauchy-Schwartz in disguise. Indeed, driven by the desire to have $\Sigma x_{k}^{2} \Sigma y_{k}^{2}$ on the right in (1), define x_{k}, y_{k} by

$$
\begin{equation*}
a_{k} h_{k}^{2}=x_{k}^{2}, a_{k}=y_{k}^{2} \tag{2}
\end{equation*}
$$

but then multiplying these two definitions (2) side-by-side ("sidewise"?) gives $a_{k}^{2} h_{k}^{2}=x_{k}^{2} y_{k}^{2}$, or

$$
a_{k} h_{k}=x_{k} y_{k},
$$

so that (11) indeed amounts to the Cauchy-Schwartz inequality

$$
\left(\Sigma x_{k} y_{k}\right)^{2} \leq \Sigma x_{k}^{2} \Sigma y_{k}^{2} .
$$

Figure 1: Opening the valves decreases the potential energy; this is equivalent to the CauchySchwartz inequality.

