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Littlewood [10] constructed an example of an equation of the form & + V'(z) = p(t)

with £ ix) — oo and yet possessing unbounded solutions. This note contains a considerable
simplification of Littlewood’s construction and gives rather precise information on the

behavior of Kii) — oo under which the resonances of the type constructed by Littlewood
are possible.

The above equation is a model Hamiltonian system for which the problem of stability
(i-e. of the boundedness of solutions for all time) arises in its full difficulty. The Poincaré
period map (also called the stroboscopic map) which maps the plane of initial conditions
(z, %) into itself* is area—preserving due to the conservative character of the equation. If
the potential V' (z) happens to be superquadratic, i.e., if it grows faster than z2 as |z| — oo,
then one might expect that map possesses a twist at infinity, i.e. that the the points that
are further from the origin undergo more revoluitons during one period of the forcing. In
physical rather than the geometrical terms, the twist corresponds to the dependence of the
frequency on the amplitude. Intuitively speaking, the twist may be expected to destroy
the resonances that could cause the accumulation of energy and thus the unboundedness.
By contrast, in the case of quadratic potential, the equation is linear: # + w?z = p(1),
and it is well known that the parametric resonance can occur, with the solutions growing
without bound. In some examples of superquadratic potentials it has in fact been shown
that all solutions stay bounded for all time [3], [4], [12] (see also [11], [17] for the case of
potentials periodic in z). The proofs of boundedness all use Moser’s twist theorem [7], [14],
[18]. The Poincaré-Birkhoff fixed point theorem [2], [5], [9] has also been used to show the
existence of periodic solutions [6], [8]. The Aubry-Mather theory and other recent results
on monotone twist maps (1], [9], [13], [15], [16] shed new light on the qualitative behavior
of the problem; we do not discuss here the implications of these results for our problem.

2. Results.

Returning to the discussion of the construction of an unbounded solution, we will
start with the equation

i+ 42° = p(t) (1)

where p(t) = (—1)l1+! with [t] denoting the integer part of ¢.

* If the solutions do not blow up in finite time, as happens, for instance, to all solutions
of £ — z? = 1 at both ends of the time interval.



Theorem. There ezists a« C™ modification V(z) of the potential Vo(z) = z* satisfying
for some C > ¢ > 0 the estimates

ot S V(2) < C2t, ea® < [V'(2)| < Clef’,
such that the equation
&4+ V'(z) = p(t) (2)
has an unbounded solution, whose rate of growth, moreover, is given by
L 2 | 4\ L
cts < (2* 4+ z*)* < Cts,

where ¢, C are some constants which can be estimated more explicitly.
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Figure 1. Resonance conditions and the modification of the potential.
Each arrow represents an odd number of swings which takes exacly one half-period.
If the graph of V; = z* is replaced by Uy = Vy(z) + «,
then the arrows marked p = F1 become horizontal.

Remark 1. A twist criterion.

We will derive here a simple sufficient condition on the potential for the Poincare map
of an autonomous system to possess twist, and show that this condition is violated by the
potential constructed here. Let z(t) = (z(t), (t)) be a solution of # + V'(z) = 0 in the
phase plane, and let ¢ = (£(¢),7(t)) be a solution of the system linearized around z(t).
Assume that each solution vector z(t) rotates clockwise in the phase plane. The criterion
1s based on the following geometrical observation, figure 2.
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Figure 2. A sufficient condition for monotone twist:

any solution vector turns slower than the
collinear to it linearized solution vector.
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Take any solution z(t) and let ((0) be parallel to 2(0). If ¢ turns clockwise faster than
z(t), then the period T(E) of the oscillations is a decreasing function of the energy (or
the amplitude, or the area enclosed by the curve). In other words, then the Poincare map
posesses a monotone twist (with radial lines as the reference foliation). Expressing the
above idea analytically, we rewrite the condition on the angular velocity in the form

diy\, d(n v_n
a—?(;)>%(z>, whenever s E

Using the governing equations & = y,§ = —V'(z), £ = 5,7 = —=V'"(z)&, the above

criterion reduces to ,

v <V
z
This twist condition is violated by the modifications of the potential below, as one can see

easily from the fact that V" changes sign as £ — co while V' does not.

Physical interpretation of the above twist criterion. We will give a the physical mean-
ing to both sides of the last inequality. To that end, we think of the equation & = —V'(z)
as governing the oscillations of a particle moving along the z—axis subject to the restoring
force —V"' of a nonlilnear spring. Geometrical property of twist translates into the physical
property of the frequency of oscillations growing monotonically with the amplitude. Since
there is zero twist for linear springs (V' = const - z), we expect there to be a twist for
springs for which V' is superlinear; the last word is in fact made precise by the last inequal-
ity, which we finally proceed to interpret physwally Fixing z¢, we interpret ——* ( o) = = k(20)
as the “cumulative” Hooke’s coefficient of the spring at g, i.e. as the Hooke’ s constant of
an imagined linear spring whose force is is k(z¢)z when the elongation is . (In particular,
the imagined spring has the same tension V'(z) as the given one at z = zy.) On the other
hand, V"(z¢) is the “local” Hooke’s constant which measures the increment of the tesion
force V'(z) per unit change of z at « = zo. We can now restate the above twist condition
as saying:

“If the global Hooke’s coefficient (I°) 18 greater than the local Hooke’s coefficient

V(o) for all zo, then the period of osczllatzons 18 @ monotonically decreasing function of
the energy”.

3. Proof of the theorem.

In the first subsection we outline the idea of the construction; the details are carried
out in later subsections.

3.1. An outline of the construction.

Referring to Figure 1, we start with zo > 0 chosen so that the solution z(t) with an
initial condition £(0) = z¢, #(0) = 0 swings left and stops at £ < 0 at t =1, ie with
z(1) = —z1 < 0, £(1) = 0. We will modify Vo(z) = z* in such a way that the solution
z(t) of the equation (2) is in resonance with p(t):

z(2n) = 29, > 0, 2(2n) =0, (3a)
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a:(2n + 1) = —Ton41 < 0, :1:(2n + 1) = 0, (3b)

for all integer n > 0. The modification of z* will preserve the values of V; at the points
(—1)*z} where the solution turns around, i.e. V((—1)¥zy) = z} for all integer k£ > 0. Once
the potential V5(z) = z* has been modified to achieve the resonance conditions (3), the
unboundedness of the solution z(t) follows at once. Indeed, during the first half-periods,

when 2n < t < 2n 4 1, we have p = —1 and thus 1”-21 + V(z) + z = const., while for the

=2

second half-periods 2n + 1 < t < 2n + 2 we have Z- 4+ V(z) — ¢ = const. . Using these

conservation relations for the endpoints t = 2n and ¢t = 2n + 1, we obtain:
V(z2a) + 2n = V(—22n41) + (=T2n+1),

V(—$2n+1) — (—Zan41) = V(z2n+2) = (T2n42),

both of which yield the same relation
Trg1? — Tkt = Tp + Thpa, (4)

where V((—l)kxk) = z* was used. This difference equation says simply that the net
gain in potential energy V during each half-period equals the product of the external
force p(t) = (—1)¥*1 acting during k-th half-period and the net distance z(k+1) -
z(k) = (1) gy — (=1)rzy = (—=1)**Y (2441 + z1) traveled during that half-period,
le. Ty + x4 This energy gain is the key idea of Littlewood’s example. It should be
pointed out that the difference equation (4) defines the sequence z; > 0 uniquely for any
zo > 0, so that from now on the z4’s are the fixed quantities. The following lemma implies

in particular that eq.(4) and thus the resonance conditions (3) imply the unboundedness
of z(1).

Lemma 1. Any positive sequence {zr} with 2o > 0 defined by the recurrence relation
(4) satisfies the following estimates, for some C > ¢ > 0, with ¢ = ¢(zo), C = C(zop):

ck¥ < x4 < Ck¥, (5a)
Try1 — o < Ck™§, (5b)
- 4
4
cn’d < ka < Cns, (5¢)
0
czp < Thy, — zh < Czy, (5d)
1< 2L ¢ (5¢)
Tk

for all £ > 1.

Proof of the lemma is given in section 3.5 below. At this stage we use only the
implication that z; — oo.



Remark 2. Avoiding virtually all computation, one can easily produce a modifica-
tion of the potential z* satisfying the resonance conditions (4); this argument, however,
does not resolve the main difficulty which is to estimate the mim'mall necesary size of the
modification, and in particular to see if one can keep the property VT — 00. To describe
the argument, we start with with eq. (1) and choose the initial position z¢ so that the
solution makes exactly one swing during the first half of the period, arriving at —z;. If
the potential is left unmodified, the solution will make more than one full swing during the
second half period: it will reach the point x5 defined above at least once. The potential
can be modified in the interval [z, z;] in such a way that the solution is slowed down so
that the point x; is reached exactly at the end of the period. A simple argument based on
the superquadratic character of z* shows that during the next half-period the solution will
again make at least one trip from z; to —z3; by modifying V in the interval [—z;, —z3]
(by making V'(z3) small enough) we slow the solution down so that z(3) = —z3, etc.,
thus achieving the resonance conditions. This argument is, however, too crude as it gives
no estimate on the how small a change of V would suffice to slow the solution. It may

be pointed out also that speeding the solution rather than slowing it cannot produce the
resonance condition.

3.2. Modification of the potential.

The potential V5 = z* will be modified inductively on the intervals I,, given by I, =
[z2k, T2k+2] and Ipgy1 = [~Z2k+3, —Z2k41), k£ > 0, by replacing z* on I, by a piecewise
linear function as shown in figure 1 and as described below. We concentrate on the case
of an even interval, I5,; odd intervals are treated in the same way. Assume that the
modification of the potential has been carried out in all previous intervals Iy, k < 2n in
such a way as to achieve the resonance conditions (3) and satisfying the growth estimates
stated in the theorem on the interval [—z2,—1, 22,]. We will change the potential z* into
a piecewise linear continuous function on the interval I,,, with the slopes ¢, and o on the
left and the right halves of I, respectively. The slope o will serve as the parameter with
which we will achieve the resonance condition. To make the modification of the potential
more explicit, we denote { = £ — Tant2, @ = Tant2 — Ton, b= z4,., — 25, (subscripts for
a and b are omitted), and define V,(z) = 4, , + W(£), where

o€ for — 2
W) = { —b+o01(f+a) for —2

the slope o is the parameter with which we will control the arrival time at the end of the
period, and ¢; = ga!’- — 0. This modification V,(z) of the potential on I3, is continuous; it
can be smoothed to a C* function in small neighborhoods of the corners while preserving

the statement of Lemma 2 below. This smoothing is described in the proof of that lemma.

3.3. Proof of the resonance condition.

According to our inductive assumption, the resonance equations (3) hold for all zj
with £ < 2n 4+ 1 and V'(z)/z > cz in the interval —z2,_1 < = < Z2,, with some ¢ > 0
independent of n. Our aim is to show that for some o = o* the next resonance condition
at t = 2n + 2 is satisfied. To that end, consider the vector z, = (z,(2n +2), £,(2n +2)) at
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which the solution (z,(t), ,(t)) in question finds itself at ¢ = 2n + 2 (after making many
(when n is large) oscillations during the preceding time interval of length one). We have
to chose o = o* so that 2,- lies on the positive z~axis. To prove that such a choice exists,
we will show that 2, makes one full revolution as o decreases fromo =0y = %; denoting
by 7() the time of a one-way swing (which is one half of the period of oscillation of the
solution of Z + V,(z) = 1 starting at (z,%) = (—%2n+1,0)), we observe that if for some
0 < gq the numbers of one-way swings differs by at least two, or more precisely, if

! _ 1 6
o) @) 2 ©
- 7(0) — 7(00) = 27(0)7(00), (7

then for some ¢* in 0 < 0* < oo we have the desired resonance condition. To show that
the modified potential satisfies the estimate V' (z) > cz?, in addition to the resonance
conditions (3), it suffices to show that eq.(7) holds with ¢ = z? — more precisely, with
some ¢ in cz3, < 0 < Cz},, with ¢, C independent of n. Indeed, then for any , say,
positive, z we have 22, < & < Z9p42. Then o > cx3, = o Ra)2z2? > C(;ﬁt)zwz > cix?,

using (5e) in the last inequality. It remains thus to prove that (7) holds with such o; we
do so by estimating both sides of (7) in (8) and (9) below.

Lemma 2. With the modification of the potential on the interval I, described above
there ezist constants C > ¢ > 0 independent of n and zy such that for all 0 < o < oy the

times 7(0) of one-way trips (for p = 1) of the solution starting at (—z3n41,0) satisfy the
estimates

Va(2(o = 1)7% ~ Va(oo = 1)7F) > 7(0) ~ 7(00) > va((o — 1)~% — V(00 — 1)7}), (8)

where a = 229,19 — T2, and
m(00) < K31, ®)

for some K independent of n. Furthermore, there ezists a C*°- smoothing of the potential
which still satisfies the above estimates.

The lemma is proven in section 3.6 below.
3.4. End of proof of the theorem.
To verify the inequality (7) it suffices to make sure that

the lower bound on 7(¢) — 7(09) > upper bound on 27(o)7(00);
substituting the bounds from (8) and (9), this amounts to
Va((o =1)7% = V200 — 17}) > 2K 231 (K23 + va(2(o — 1)~ — V(oo — 1)~ %)).
This inequality reduces to an equivalent one
(0 ~1)75(1 - 4Kz3}) > 2K%a~ 4252 4 V3(o0 — 1)~ — 2V2K 15} (00 — 1), (10)
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The first term in the right-hand side in (10) is the leading one, and is on the order of
z3n, 50 that the last inequality should be satisfied with a cho1ce of 0 =~ z2. To make
this precise, we use the estimates a = zgp42 — Ton > cwzn and o9 = ?:' > czd, from
lemma 1 (eq. (4), (5d), (5€)) to conclude that the r1ght——hand side of (10) is exceeded by
Cz!. Taking ¢ so large that the coefficient 1 — 4K z5) > ;, we conclude that for some
constant C' independent of n, (10) and thus (6) hold if 0 < ¢ —1 < Cz2,. This proves
that Littlewood’s counterexample can be implemented with the quadratic lower bound:
cz® < V', as explained in the paragraph preceding the statement of Lemma 2. The
upper estimate V' < Cz3 is obvious from the fact that the slope of z* is not more than
doubled in our construction. We emphasize that the choice of zo was made independently
of n To complete the proof of the theorem, it remains to observe that the estimates
czt < V(z) < Cz* and et? < (&2 + 2%)% < ct¥ follow directly from the above estimates.

3.5. Proof of Lemma 1.

We prove (5a); the other inequalities follow trivially from this one and from (4).
Given any x; > 0, the recurrence relation defines the next positive value zy41 unique;y;
furthermore, ) < zj+,. The recurrence relation (4) gives =}, (1 — :v,:il) =z;(1+2z:°),

and thus . . 3
14z, 14z,
1< ($k+1) = _’f3 < 3 = r4;

using (4) again, we obtain a homogeneous expression in z, 4, for the difference

B gt Bt Ter)(@k + Tk +384) (L p)(1+ o +p%) _
T @l oforn ol ¥ 2h) (et AL+ L)

= Q(px)-

Since Q(p) is a decreasing function for p > 1, and since 1 < pi < r by the first estimate,
we conclude that $ = Q(1) > 2}, — 2} > Q(r) > 1. Adding these inequalities for
k=0, 1,.. n—1, weobtain

3
5" > 2 — 23 > Q(r)n,

which proves (5a). All other estimates (5b—e) follow easily; actually, (5¢) has been proven
already.

3.6. Proof of lemma 2.

"To prove estimate (8) we note that the potentials V, and V,, differ only on the interval
I, and thus 7(0)—7(00) equals the difference T(a)—T (0, ) of the times it takes the solution
to cross the interval I, once. It is easy (but a little messy) to compute T(o) explicitly;
instead of doing that we write T(0') = T1(0) + T»(0) as the sum of the times it takes for
the solution to cross the first and the second halves of I3,, and observe that Ti(o) < Tz(0)
(if 0 < o < 09, which we assume throughout), so that Ty(0) < T(o) < 2T,(0), and only
T}, has to be estimated. One computes easily that

Ty(o) = Va(o - 1)7}, (11)
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and T(og) = v/2a(0y — 1)_'}. The last three estimates yield (8) at once.

Validity of the estimate (9) is suggested by the fact that it holds for the unmodified
potential Up(z) = z* — z, as one can check by estimating the period of one oscillation
given by the derivative -E)—Aa%i) of the area of the level curve with respect to the energy;
however, we have to make sure that the cumulative effect of the changes to the potential
on successive intervals I does not violate this asymptototic behavior. This can be done
following Littlewood, by adding up the times the solution spends in each of the intervals
It; this is done in the appendix. An alternative, slightly shorter method is to show that
the ratios of these times to the times a solution in the unmodified potential are all bounded
uniformly in n. We give yet another much shorter method; it is based on a comparison idea,
sketched in figure 3. By the definition, 7(00) is the time of one one-way trip (when p = 1)
in the potential V(z) = Voo (z) that has been modified on the intervals I k, k< 2n,andis
linear: V' = g4 on Ip,. For p(t) = 1 we have 722 +U(z) = const., where U(z) = V(z) -z,

and
( ) /z2n+2 d:E
T\Og) = .
~z2n41 VU(Z2n42) — U(2)

To estimate this integral, we break it up into the sum

—ZT2n-1 Z2n42 T2n dx
—Z2n41 ZT2n ~—ZT2n-1 \/U(x2n+2) - U(:II)

of the times of crossing the two extreme intervals I;,_; and I3, and the rest, figure 3.

o U, () = x'-x
U () = V&) -x

ﬁm]\/ XE¥6 8§

Figure 3. Proof of lemma 2.
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The second integral was estimated in (11), with the resulting bound Cz;?, using
Lemma 1. The first integral is estimated in the same way; the estimate depends only
on the inductive assumption VT' > cz which is valid on I;,—; and on the length of that
interval. To bound the integral over the middle interval we introduce the auxiliary potential
P(z) = Uo(z) + U(zznt2) ~ U(z2s), figure 3, where Uy = Vo(z) —z = z* — z, and
note that P(z) > U(z) on —z3p,—1 < = < 2n, as follows from the fact that the jumps

U(zk+2) — U(z) are increasing with k, see figure 3. Comparison with the new potential
P gives

/z2n d.’II < /‘3211 dx _ /3211 d.'L' .
—z20-1 VU(22042) = U(2)  J-2saos VUo(Z2042) — P(2) =221 v/ To(e2n) — Uo(a)

the last integral represents the time of one swing in the potential Uo(z) = z* — z (figure 3),
and thus is bounded by 3=, as a simple comparison with the motion in a quartic potential
shows. It remains to observe that the potential can be smoothed to a C* function in
arbitrarily small neighborhoods of the points where the slope of V jumps in such a way
that the effect on the times 7 is arbitrarily small.

This completes the proof of lemma 2.

3.7. Appendix: an alternative proof of the estimate on (o).

This is essentially the original proof of Littlewood. To estimate (o), we add up
the contributions of each subinterval between +z; and +z k+2; the integrals over the two
extreme intervals I3, and I,,_; are bounded by C:z:;,f, as shown above, and thus are
insignificant, with the same result for the middle interval [—1,20]; the main contribu-

tion therefore comes from the remaining sum. Breaking up the integral in the way just
indicated, we obtain

—ZT2n-1 ZT2n42 Zo nol a—pppy ol ezl dz
7(00) = / + / + / + / + / ) ’
2 ( ~Tan41 Z2n -z, kz___:l - k2=:0 z VU (22n42) — U(z)

T2k41 2k

and it remains to prove the bound (9) on the remaining two sums; we do it for the first one.

We replace each integrand by its maximum over the interval of integration, and estimate
the resulting greater sum

nil T2k+1 — T2k—1 i = T2k+2 — T2k . (12)
im1 VU(@2n42) = U(z2k-1) =5 /U(2n42) — U(2k)

We replaced U(z) by its maximum on each interval Iy, using the fact that U is increasing
for £ > 0 and decreasing for ¢ < 0. The numerators of each summand in (12) are
bounded by Ck~%, according to lemma 1. To estimate the denominators we first note that
U(zar) = z5; — 2ok, while U(zok41) = m%k_ﬂ + T3k+1. Adding up the recurrence relations
for the sequence {1}, we obtain the expressions for the denominators in (12) as the sums
(we abbreviate 2n + 2 = m):

2n+1
U(zm) - U(zak-1) = (22nt1 + T2n41) — (x§k+1 + Zak41) = 2 Z Zjs (130)
J=2k+2



' 2n+1
U(zm) = Uzar) = (27, — 2m) = (¢4 — z22) =2 D ;. (13b)

=2k
We bound these sums frorri below using the estimates z; > ck% from lemma 1, together

. . . . 4 . . . : :
with the inequality Z;n:, JE> %mﬁ' (1- (-;fl-)és) which one obtains by observing that it is
an upper Riemann sum for the integral m3 i) i z3dz. Substitution of these estimates in
(13a) gives "

2n+1

k
S zi>cen+ (- (2,
) 2n+1
J=2k+2

using this in the denominator of the first sum in (12) results in the upper bound for that
sum:

1
2k +2 4,72
2n+1)3) ;

cfi (k+1)75F2n+1)"F (1
k=1

letting ﬁ_’ﬁ =t} and Aty = 2—nl+—1, we note that the above sum is less than

iy —z 5
(2n+1)7% Y P~ (24)) FAL <2(2n+1)7F / t~8(1 - (2t)%) % dt.
=527 0

Since (2n + 1)_% < Czi?', this estimate gives the desired bound on the first sum in (12).
The second sum is estimated in the same way. This proves lemma 2 (again).
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