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In the early days of quantum mechan-
ics, physicists wondered why Planck’s 

constant is constant — why is the energy/
frequency ratio of photons fixed? After 
all, the atom that emits photons is buffeted 
by a surrounding electromagnetic field; it 
is surprising that this buffeting does not 
change the ratio.

At a Solvay Conference in 1911, Einstein 
showed that a slightly analogous phenome-
non occurs for the mathematical pendulum. 
If the string’s length is changed appreciably 
but slowly enough (taking a long time), 
then the ratio changes arbitrarily little. 
Quantities that behave in such a way are 
called adiabatic invariants.

Einstein derived the adiabatic invariance 
of the pendulum from the conservation of 
energy: the work of pulling the string is 
spent on lifting the bob and on changing 
the bob’s energy of oscillations. With some 
massaging, this statement yields the conclu-
sion that E /w  is an adiabatic invariant.

In addition to Einstein’s physical expla-
nation (which I believe can be made rigor-
ous), another one exists that is based on 
the action-angle variables [1]; we can actu-

ally turn it into a geometrical proof that is 
almost free of formulas.

The coexistence of two seemingly unre-
lated explanations of the same effect sug-
gests the need to rise above the maze to 
see the whole picture at a glance; as far as 
I know, this remains to be done. Instead, I 
would like to illustrate Einstein’s idea on a 
simple toy model of Ulam’s ping-pong: a 
particle bouncing between two walls — a 
baby model of ideal gas (see Figure 1).

Unlike in Figure 1, the wall in Figure 2  
moves in slowly. The work spent on push-
ing the wall adds to the kinetic energy of 
the “molecule”:

E v= 2 2/  is the energy of unit mass and 
w= =1 1 2/ /( / ).T L v

4. The adiabatic invariance of vL  is the 
one-dimensional version of the adiabatic 
equation for ideal gas:
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g= const., 	  
(4)

 where g =
+f
f
2
,

Here, f  is the number of 
degrees of freedom; f =1  and 

g= 3  for our “gas.” To see this connection, 
we note that pressure, volume, and tempera-
ture ( , , )p V T  in ideal gas correspond to 
our F,  L,  and mv2 2/  respectively. Since 
(4) involves pressure and volume, we also 
wish to express our adiabatic invariant vL  
in terms of “pressure” F  and “volume” L. 
Substituting the v  from (2) into vL  yields

                   vL FL m= 3/ ,

so that FL3» const.  This is the exact 
counterpart of (4) for f =1.

5. pV g,  or rather its power, has a geomet-
rical interpretation as the volume enclosed by 
the energy surface in the phase space.

Proof of (2). The momentum in each col-
lision with the right wall in Figure 1 chang-
es from mv  to -mv,  i.e., by 2mv  at each 
impact. These impacts are spaced at times 
T L v=2 /  apart. The change of momentum 
per unit time, i.e., the force, is hence

                   

2 2mv
T

mv
L

= ,

as claimed. 
Interestingly, this is exactly the same 

force as the centripetal force upon a mass 
m  that moves in a circle of radius L  with 
speed v;  in fact, we can derive (2) by con-
sidering motion with speed v  on a circle 
but one of radius L/ ;2  I omit this alterna-
tive derivation.

The figures in this article were provided 
by the author.
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Here, F  is the averaged force of impacts on 
the wall in Figure 1 for the fixed wall; the 
“»” sign is due to the fact that I replaced 
the averaged force that the mover applied 
in Figure 2 with F  — associated with the 
fixed wall in Figure 1. I claim that
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; 		   (2)

this is proven at the end.
Substitution of (2) into (1) gives
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The minus sign is due to the 
fact that the mover in Figure 2 
pushes left, i.e., in the negative 
direction. Rearranging (3) yields

     

dL
L

dv
v

d vL+ ≈ ≈0 0or
entropy

( )ln
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so that vL» const.
Here are some remarks:
1. vL  is the area of the path in the phase 

plane when the walls are fixed (see Figure 3).
2. ln ,vL  the log of the phase area, is the 

entropy of our “gas.” It is additive because 
phase volumes multiply when we add more 
dimensions. Just like in this simple case, the 
entropy of ideal gas is the log of the volume 
that is enclosed by the energy hypersurface 
in the phase space. It is also an adiabatic 
invariant of the gas.

3. As with the pendulum, the energy/
frequency interpretation for Ulam’s 

ping-pong holds: vL
E

=
w

,  where 
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Figure 1. Ulam’s ping-pong, wherein a particle collides with the walls without loss of energy. 
There is no gravity. The particle exerts average force F mv L= 2/  on each wall: the analog of 
pressure in this single-atom gas.

Figure 2. Moving the wall in slowly.

Figure 3. Phase plane of Ulam’s ping-pong. The wall moves only during time 0 1< <t /e  and 
is otherwise fixed. The area changes minimally: v L v L O
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