Electrical Resistance and Conformal Maps

Would like to elaborate on the observaItion in my April 2023 article, titled "Conformal Deformation of Conductors." ${ }^{1}$ Imagine a current-conducting sheet: negligibly thin, homogeneous, and isotropic. Let us cut a square out of the sheet and measure the resistance, as in Figure 1. The following fact is both fundamental and almost trivial:
Squares of all sizes
have the same resistance.

Indeed, dilation of the square changes the distance that the current must travel, and by the same factor as the width; these two effects cancel each other out - but only in \mathbb{R}^{2}. In \mathbb{R}^{3}, for example, dilating a cube by a factor λ divides the resistance (between the opposite faces) by λ, and in \mathbb{R} the resistance multiplies by λ.
From now on, let the resistance of the square $=1$ ohm. Geometrically, resistance is a "measure of elongation": a rectangle whose resistance $=1$ must be a square (see Figure 2).
A classical theorem in complex analysis states that two annuli (see Figure 3) are conformally equivalent (i.e., they can be mapped onto one another by a conformal $1-1 \mathrm{map}$) if and only if they have
${ }^{1}$ https://sinews.siam.org/Details-Page/ conformal-deformation-of-conductors

Figure 1. Resistance-i.e., the necessary voltage to push through a unit of current-is measured between opposite sides (coated with a perfect conductor).

$R=$ length/width
Figure 2. If $R=1$, the rectangle is a square.
the same ratio of radii. A more general theorem states that two doubly connected "annuli"-like those in Figure 4-are conformally equivalent if they have the same modulus: a certain number that is associated with the region. I would like to point out that that the modulus is simply the electrical resistance.
To rephrase these theorems: Two annular regions A and A^{\prime} in Figure
\qquad and a rectang

MATHEMATICAL

 CURIOSITIESBy Mark Levi $A \sim A^{\prime}$ if and only if they have the same electrical resistance between their inner and outer boundaries:
(2)

$$
\begin{equation*}
R(A)=R\left(A^{\prime}\right) . \tag{2}
\end{equation*}
$$

Idea of the Proo

In order to construct a conformal map $A \leftrightarrow A^{\prime}$, let us push the current by applying voltages $V=0$ to the inner boundary and $V=1$ to the outer boundary. ${ }^{2}$ For a large integer n, consider the equipotential lines $h_{i}, i=0, \ldots n$ that are spaced by the potential difference $1 / n$ (see Figure 5); h_{0} is the inner boundary and h_{n} is the outer boundary. Fix an arbitrary line v_{0} of steepest descent of the electrostatic potential-the line
of current-and let v_{1} be the line 2 By doing so, we consider the solution of the Dirichlet problem in the annulus with prescribed boundary values 0 and 1 . limit of $n \rightarrow \infty$. Figure 5) the resistance is squares to squares. have the same ratios.

Figure 3. Two annuli are conformally equivalent if and only if their rad
of steepest descent that is chosen so that the current through the channel $v_{0} v_{1}$ is $1 / n$. Continue adding current lines v_{j}, as in Figure 5, and stop at $j=m$ when the current through the channel $v_{m} v_{0}$ becomes $<1 / n$. This last channel plays no role in the

We divided the annulus into $n \times m$ infinitesimal curvilinear rectangles $Q_{i j}$, which we enumerate by the rectangle's layer i, $1 \leq i \leq n$ and the channel $j, 1 \leq j \leq m$ (see

I claim that each curvilinear rectangle $Q_{i j}$ is a square in the limit of $n \rightarrow \infty$. Indeed,

$$
R\left(Q_{i j}\right)=\frac{\text { voltage drop }}{\text { current }}=\frac{1 / n}{1 / n}=1,
$$

and a rectangle for which resistance $=1$ is a square (as indicated in Figure 2).
What is the resistance of A ? Each channel has resistance n (being a stack of n squares), and with m channels in parallel,

$$
R(A)=\frac{n}{m}
$$

ignoring a small error due to the resistance of the last channel $v_{m} v_{0}$. The resistance thus has an almost combinatorial meaning.
To construct the map $A \leftrightarrow A^{\prime}$, we divide A^{\prime} into $n \times m^{\prime}$ squares $Q_{i j}^{\prime}$. If $R(A)=R(A)$, then $m=m^{\prime}$; this allows a 1-1 assignment of $Q_{i j}$ to $Q_{i j}$. The result is a discrete conformal map since it takes

igure 4. Two doubly connected regions are conformally equivalent precisely when they have the same resistance between their inner and outer boundaries

Showing the converse: $A \sim A^{\prime}$ implies $R(A)=R(A)$. We divide A into "squares $Q_{i j}$ as before, with $1 \leq i \leq n$ and $1 \leq j \leq m$ The conformal equivalence induces a division of A^{\prime} into "squares" (by conformality) with the same $m^{\prime}=m$ (since the map is $1-1$). Therefore, $n / m=n / m$ and $R(A)=R\left(A^{\prime}\right)$. In short, (1) dem onstrates that the resistance is a confor mal invariant, as was already mentioned in the April 2023 article.

The figures in this article were provided by the author

Mark Levi (levi@math.psu.edu) is a pro fessor of mathematics at the Pennsylvania State University.

Figure 5. Subdivision of A into infinitesima squares $Q_{i j}$. Concentric "horizontal" lines h_{i} are equipotentials. Steepest descent "vertical" current lines v, are added in a counterclockwise direction until the last line v_{m}. The "square" $Q_{i j}$ is bounded by h_{i-1}, h_{i} and v_{j-1}, v_{j}.

