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Electrical Resistance and Conformal Maps
I would like to elaborate on the observa-

tion in my April 2023 article, titled 
“Conformal Deformation of Conductors.”1 
Imagine a current-conducting sheet: negli-
gibly thin, homogeneous, and isotropic. Let 
us cut a square out of the sheet and measure 
the resistance, as in Figure 1. The following 
fact is both fundamental and almost trivial:

 
 
      (1)
   

Squares of all sizes

have the same resistance.

Indeed, dilation of the square changes 
the distance that the current must travel, 
and by the same factor as the width; these 
two effects cancel each other out — but 
only in 2. In 3, for example, dilating 
a cube by a factor l divides the resistance 
(between the opposite faces) by l, and in  
the resistance multiplies by l.

From now on, let the resistance of the 
square =1 ohm. Geometrically, resistance 
is a “measure of elongation”: a rectangle 
whose resistance =1 must be a square (see 
Figure 2).

A classical theorem in complex analysis 
states that two annuli (see Figure 3) are 
conformally equivalent (i.e., they can be 
mapped onto one another by a confor-
mal 1 1-  map) if and only if they have 

1 https://sinews.siam.org/Details-Page/
conformal-deformation-of-conductors

of steepest descent that is chosen so that 
the current through the channel v v0 1 is 
1/ .n  Continue adding current lines vj , as 
in Figure 5, and stop at j m=  when the 
current through the channel v vm 0 becomes 
<1/ .n  This last channel plays no role in the 
limit of n→∞.

We divided the annulus into n m´  infin-
itesimal curvilinear rectangles Qij , which 
we enumerate by the rectangle’s layer i, 
1£ £i n and the channel j,  1£ £j m (see 
Figure 5).

I claim that each curvilinear rectangle Qij 
is a square in the limit of n→∞. Indeed, 
the resistance is
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and a rectangle for which resistance =1 
is a square (as indicated in 
Figure 2).

What is the resistance of 
A? Each channel has resis-
tance n (being a stack of n 
squares), and with m  chan-
nels in parallel,
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n
m
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ignoring a small error due to the resistance 
of the last channel v vm 0

. The resistance thus 
has an almost combinatorial meaning.

To construct the map A A↔ ′, we 
divide A¢ into  squares Qij

¢ . If 
R A R A( ) ( ),= ′  then  this allows 
a 1 1-  assignment of Qij

¢  to Qij . The result 
is a discrete conformal map since it takes 
squares to squares.

Showing the converse: A A ¢ implies 
R A R A( ) ( ).= ′  We divide A into “squares” 
Qij  as before, with 1£ £i n  and 1£ £j m. 
The conformal equivalence induces a 
division of A¢ into “squares” (by confor-
mality) with the same  (since the 
map is 1 1- ). Therefore,  
and R A R A( ) ( ).= ′  In short, (1) dem-
onstrates that the resistance is a confor-
mal invariant, as was already mentioned 
in the April 2023 article.

The figures in this article were provided 
by the author.
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the same ratio of radii. A more general 
theorem states that two doubly connected 
“annuli”—like those in Figure 4—are con-
formally equivalent if they have the same 
modulus: a certain number that is associ-
ated with the region. I would like to point 
out that that the modulus is simply the 
electrical resistance.

To rephrase these theorems: Two annular 
regions A and A¢ in Figure 
4 are conformally equivalent: 
A A ¢ if and only if they have 
the same electrical resistance 
between their inner and outer 
boundaries:   
                      
     R A R A( ) ( ).= ′

   (2)

Idea of the Proof
In order to construct a conformal map 

A A↔ ′, let us push the current by applying 
voltages V = 0 to the inner boundary and 
V =1 to the outer boundary.2 For a large 
integer n, consider the equipotential lines 
hi, i n= …0,  that are spaced by the poten-
tial difference 1/n  (see Figure 5); h0 is the 
inner boundary and hn is the outer boundary. 
Fix an arbitrary line v0 of steepest descent 
of the electrostatic 
potential—the line 
of current—and 
let v1  be the line 

2 By doing 
so, we consider 
the solution of the 
Dirichlet problem 
in the annulus with 
prescribed bound-
ary values 0 and 1.

Figure 1. Resistance—i.e., the necessary 
voltage to push through a unit of current—is 
measured between opposite sides (coated 
with a perfect conductor).

Figure 2. If R=1, the rectangle is a square.

Figure 3. Two annuli are conformally equivalent if and only if their radii 
have the same ratios.

Figure 4. Two doubly connected regions are 
conformally equivalent precisely when they 
have the same resistance between their 
inner and outer boundaries.

Figure 5. Subdivision of A into infinitesimal 
squares Qij . Concentric “horizontal” lines 
hi are equipotentials. Steepest descent 
“vertical” current lines vj  are added in a 
counterclockwise direction until the last 
line vm . The “square” Qij is bounded by 
h hi i-1,  and v vj j-1, .

MATHEMATICAL 
CURIOSITIES
By Mark Levi


