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Riemann Mapping Theorem by
Steepest Descent

Mark Levi

This note presents a short proof of the following slightly weakened version of the
Riemann mapping theorem.

Theorem 1 (Riemann). Let D be the open region bounded by a simple closed ana-
lytic curve C in the complex plane, and let z0 be a point in D. There exists an analytic
function f that maps D onto the unit disk � = {z : |z| < 1} in a one-to-one fashion
with f (z0) = 0 and f ′(z0) > 0.

This version of the theorem is weaker than the most general statement, which re-
quires only the simple connectedness of D (see [1]). The map f in the theorem is
unique, as the Schwarz lemma implies, but we are concerned here only with its exis-
tence.

Our proof relies on the existence of the solution to the Dirichlet problem in D (i.e.,
on the existence of a unique harmonic function that is continuous on the closure D of
D and has prescribed values on the boundary ∂ D of D). A different proof using the
Dirichlet problem can be found in [5].

Construction of the map. Consider a harmonic function u(z) vanishing on ∂ D and
possessing the following logarithmic singularity at z0 (Figure 1; for simplicity of no-
tation we choose z0 = 0, which entails no loss of generality):

u(z) = ln |z| + u0(z). (1)

Here u0 is the solution of the Dirichlet problem in D for the boundary data u0(z) =
− ln |z|, which is chosen to ensure that u|∂ D ≡ 0. Physically, u can be interpreted
as the stationary temperature of the heat-conducting homogeneous lamina D whose
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boundary is kept at zero temperature and whose interior contains a heat-sink of strength
2π placed at the origin. The function u is known as Green’s function for the domain D.
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Figure 1. Construction of the Riemann mapping by steepest descent along Green’s function.

With u so defined, consider the motion down the gradient of u with adjusted speed,
corresponding to the following system of ODEs:

ż = − ∇u

|∇u|2 ≡ F(z) (z �= 0). (2)

Here we identify the real vector ∇u = 〈ux , uy〉 with the complex number ∇u = ux +
iuy . We will show that ∇u �= 0 for z in D \ {0}, so that the vector field F is well defined
in the punctured domain. Furthermore, defining F(0) = 0 makes F continuous on D,
since |∇u| → ∞ as z → 0.

Let ϕt be the time-t map associated with (2) (i.e., ϕt z is the value at time t of the
solution of (2) starting at z at t = 0). The Riemann map f : D �→ �R = {z : |z| < R}
is given, we claim, simply by

f (z) = lim
t→∞ etϕt z, f (0) = 0, (3)

where R = e−u0(0).

Heuristic idea of the proof. First we observe that level curves of u remain such un-
der the flow (2): du/dt = ∇u · ż = −1, and thus ϕt D = {z : u(z) < −t}. Since the
leading term of u near 0 is ln |z|, we conclude that ϕt D is approximately a round disk:1

{z : u0(z) + ln |z| < −t} ≈ {z : u0(0) + ln |z| < −t} = {z : |z| < e−t e−u0(0)}.
Dilation by the factor et brings this to the disk �R .

To explain the analyticity of f , we observe that the vector field F(z) is analytic in
D. Indeed, using the complex notation ∇u = ux + iuy introduced earlier we have

F(z) = − ∇u

∇u∇u
= − 1

∇u
.

Since u is harmonic in D \ {0}, ∇u is analytic there (its real and the imaginary parts
satisfy the Cauchy-Riemann equations). Because ∇u �= 0 in the punctured domain, we

1We do not define “approximate” here, since the subsequent rigorous proof does not rely on this heuristic
discussion.
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conclude that F is likewise analytic in D \ {0}. The remaining point z = 0 is a remov-
able singularity of F , since F is continuous at z = 0. It follows that F is analytic in
D. By the theorem on uniqueness and analytic dependence on initial data of solutions
to ODEs with analytic right-hand sides, ϕt is one-to-one and analytic in z, hence so is
ft = etϕt . This suggests that the limit f = limt→∞ ft is analytic as well. A rigorous
proof of this fact is given in the next section. This completes our heuristic discussion.

Remark. This outline might create a (false, as it turns out) hope that the proof extends
to higher dimensions, giving a diffeomorphism from any topological ball in R

n to a
round ball. This hope is dashed by the fact that ∇u may vanish for topological balls
in higher dimensional domains, as can be seen using ideas in [4]. In fact, our proof of
∇u �= 0 exploits the topology of the plane.

The proof. For a rigorous proof we have to verify (1) that ∇u does not vanish in
D \ {0}, and (2) that limt→∞ etϕt z is an analytic one-to-one map from D to �R .

(1) The nonvanishing of ∇u. It suffices to prove that ∇u does not vanish in an
“annular” region

At = {z : −t < u(z) < 0} (4)

for arbitrarily large t . According to the Poincaré index theorem [2],2 the index of the
vector field ∇u over the boundary of At equals the sum of the indices of rest points of
the vector field ∇u inside At :

ind∂ At ∇u =
∑

a: ∇u(a)=0

inda∇u. (5)

We show that the left-hand side of (5) vanishes, whereas inda∇u ≤ −1 for any critical
point a of u, thus proving that the set of rest points of ∇u in At is empty. Starting with
the left-hand side in (5), observe that the boundary ∂ At consists of two level curves of u
(namely, ∂ D and the near-circle {z : u(z) = −t}) and that ∇u is normal to both curves.
Moreover, ∇u �= 0 on both curves, as we prove in the next paragraph. Now the index
of a normal vector field along a closed curve oriented in the counterclockwise direction
is −1. Since the two boundary curves of At are oriented in opposite directions (as one
travels along the boundary curve, the domain has to be on one’s left), we conclude that
the left-hand side in (5) is 1 − 1 = 0. On the other hand, inda∇u ≤ −1 at any zero a
of ∇u, according to Theorem 2 at the end of this note.

It remains to show that ∇u �= 0 on ∂ At . For the inner boundary, where u = −t ,
this is immediate from (1) for sufficiently large t . Because the outer boundary ∂ D is
analytic, u can be extended to a harmonic function in a neighborhood of any boundary
point p of D (see, for example, [3]). It follows that u = Re g(z) for some complex
function g analytic in some open disk centered at p. Now, if ∇u(p) = 0, then g′(p) =
0, implying that g(z) = cn(z − p)n + · · · with n ≥ 2. Thus for z near p

u(z) = Re cn(z − p)n + · · ·. (6)

This function takes alternating signs in sectors, as illustrated in Figure 2. Since ∂ D is a
smooth curve passing through p and since there are 2n (≥ 4) sectors, we conclude that
u(z) > 0 at some points inside D (Figure 2). But u ≤ 0 on ∂ At and by the maximum
principle we must have u < 0 in the interior of At , a contradiction. The proof of ∇u �=
0 is complete.

2See the last section of this note for the definition of the index and for the statement of Poincaré’s theorem.
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Figure 2. Presence of a critical point on ∂ D forces u to vanish at some points inside D.

(2) Proof that f (z) = limt→∞ etϕt z is a one-to-one and analytic map from D to
�R . We could prove this directly by showing that ft(z) = etϕt z “slows down” fast
enough as t → ∞ for each fixed z, so that the properties of ft survive in the limit.
We choose the quicker approach of compactifying the time interval. We compress
the “eternity” 0 ≤ t < ∞ into one second: 0 ≤ τ < 1 by the rescaling τ = 1 − e−t ;
thus t = ∞ corresponds to τ = 1. We show that the flow extends continuously to the
closed time-interval [0, 1] (this is the key), and then appeal to the theorem on analytic
dependence on initial conditions, concluding that f is well defined and analytic. We
now proceed with the details.

The dilated variable Z(t, z) := etϕt z satisfies the ODE

Ż = Z + et F(e−t Z), (7)

as one checks by substituting ϕt z = e−t Z into (2). As remarked earlier, F is analytic
in D. From (1) we conclude that the leading Taylor coefficient of F at 0 is −1: F(z) =
−z + Q(z), where Q(z) = q2z2 + · · · for z near 0. Substituting this expression for F
into (7) we obtain

Ż = et Q(e−t Z) (8)

(i.e., the linear terms in (7) cancel). This cancellation was to be expected, because the
exponential rate of contraction by ϕt approaches the exponential rate of expansion by
et for large t , reflecting the “slowing down”of ft(z) mentioned earlier. In terms of the
new time τ = 1 − e−t , (8) translates to

W ′ = (1 − τ)−2 Q((1 − τ)W ), (9)

where W (τ ) = Z(t (τ )) and ′ = d/d τ (we used d/d t = (1 − τ)d/d τ ).
Since Q starts with quadratic terms, the right-hand side in (9) is continuous for τ in

[0, 1], including at τ = 1. The time-one map f := Wτ=0 �→ Wτ=1 is thus well defined.
This map is one-to-one and analytic, since the right-hand side of (9) is analytic in W .
Finally, f (D) = {W : |W | < R}, with R = e−u0(0). In fact, ϕt D = {z : u(z) < −t},
so the dilated domain, consisting of Z = et z for z in ϕt D, is given by

etϕt D = {Z : u0(e
−t Z) + ln |e−t Z | < −t}. (10)

Expressing (10) in terms of τ and simplifying, we obtain

etϕt D = {W : eu0((1−τ)W )|W | < 1}.
For τ = 1—an allowed value!—this set is precisely the disk |W | < e−u0(0) = R, as
claimed.
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Index of a critical point of a harmonic function. The following fact was used in the
foregoing discussion:

Theorem 2. The Poincaré index of any zero of the gradient vector field of a harmonic
function u in R

2 is at most −1.

Proof. Let ∇u(0) = 0.3 Since u is harmonic, the complex function ∇u is analytic near
0, whence it is given by a Taylor series near 0:

∇u(z) = ak zk + ak+1zk+1 + · · · ,

where k ≥ 1. Thus indz=0∇u = k. Since conjugation changes the sign of the Poincaré
index, as follows from the definition of this concept [2] and from the fact that conju-
gation changes the sign of the argument of a complex number, we have

indz=0∇u = −k ≤ −1. (11)

Poincaré’s index theorem. We give some minimal background on the index of a
vector field in the plane. Details and proofs can be found in [2].
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Figure 3. Poincaré index of the saddle is −1; for the degenerate saddle with k = 2 in (11) the index is −2.
Under perturbation this degenerate saddle splits into three saddles and a center; the total index remains un-
changed.

Let v be a continuous vector field on a domain D in R
2, and let γ be a simple closed

oriented curve in D such that v does not vanish on γ . The index indγ v of v on γ is,
by definition, the integer number of revolutions made by the vector v(z) as the point
z traverses γ exactly once in the prescribed direction (Figure 3). Consider an isolated
rest point a of the vector field v, and let γa be a simple closed curve surrounding a but
having no other rest points in its interior. This time let γa have the counterclockwise

3We assume, without loss of generality, that the rest point is at the origin.
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orientation. The index indav of the vector field v at the rest point a is given by

indav = indγa v.

The index does not depend on the choice of the curve γa (see [2]).
To formulate Poincaré’s theorem, consider a domain D in R

2 whose boundary is
the disjoint union of finitely many smooth simple closed curves (a smoothly bounded
annulus is an example). We give each curve an orientation such that the domain re-
mains on one’s left when the curve is traversed with that orientation. More formally,
a tangent vector whose direction agrees with the prescribed orientation and an inward
normal vector form a right-handed frame. For the example of the annulus the outer
boundary’s orientation is counterclockwise, while the inner boundary’s orientation is
clockwise. With this convention, the index around ∂ D of a vector field defined in a
neighborhood of D is the sum of its indices on the component curves of the boundary.

Theorem 3 (Poincaré Index Theorem). Let v be a continuous vector field defined on
a neighborhood of the closure of a domain D in R

2 that is bounded by finitely many
smooth simple closed curves. Assume that all rest points of v are isolated and that
none lie on ∂ D. Then the Poincaré index of v around ∂ D equals the sum of indices of
all rest points inside D.

A proof of the theorem can be found in [2].
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Entire Functions that Tend to Zero
on Every Line

David H. Armitage

1. INTRODUCTION. Although every bounded entire (holomorphic) function on C

is constant (Liouville’s theorem), it has been known for more than a hundred years
that there exist nonconstant entire functions f such that f (z) → 0 as z → ∞ along
every line through 0 (see, for example, Lindelöf’s book [10, pp. 119–122] of 1905).
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