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The combined dynamical effects of elasticity and a rotating reference frame are explored for structures in a zero gravity
environment. A simple yet general approach to modeling is presented, and this approach is applied to analyze in detail the
dynamics of a specific prototypical structure. Energy dissipation is included and its effects are studied in detail in a model

problem. Bifurcations and stability are analyzed as well.

1. Introduction

There is now a fairly general awareness among
aerospace engineers that the dynamics of the com-
plex spacecraft currently in production and on the
drawing boards will be greatly influenced by con-
tinuum mechanical effects such as elasticity. In-
deed as the designs being contemplated increase in
size and complexity [13] the dynamic effects of
flexible members become more important, and
recognizing this, many researchers over the last
decade have focused their efforts on obtaining new
methods for the design, analysis, and control of
flexible mechanisms. Space does not permit (nor
would it be in keeping with the main purpose of
this paper) to survey the vast literature on flexible
space structures; the interested reader can get
some idea of research activity in this area by
referring to any one of a number of collections of
papers and conference proceedings, such as [12].

*Both authors gratefully acknowledge support from the Air
Force Office of Scientific Research under Grant No. AFOSR
85-0144.

The purpose of this paper is to describe recent
research which has been aimed at developing a
mathematical theory of the rotational dynamics of
complex mechanical systems which include
articulated and elastic components. Our objective
in this research has been to carry out a study of
the global qualitative dynamics of such systems in
sufficient depth as to allow predictions regarding
the stability and asymptotic behavior of spacecraft
due to a variety of energy dissipation mechanisms
such as viscoelastic material damping of vibra-
tions of elastic parts. We believe that historical
evidence points to the value of developing a fairly
complete global asymptotic stability theory of this
type since there are numerous examples of mis-
sions in space which did not achieve their stated
objectives because certain long term mechanical
effects were never adequately taken into account
in the mission planning. Explorer I, the first suc-
cessfully launched American satellite, provides the
best known example of such untoward behavior.
Upon achieving earth orbit, the pencil-shaped
satellite was supposed to rotate about its major
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axis of inertia. Before it had completed one orbital
revolution, however, radio signals indicated that a
tumbling motion had developed and was increas-
ing in amplitude.

While explanations of Explorer’s errant behav-
ior have been offered by a number of researchers
(see e.g. references to this problem in [7]), we are
aware of no attempts to obtain a rigorous
mathematical analysis of such occurrences, with
the exception of [3], where some of the results of
the present paper were announced. We also men-
tion a recent paper [8] which deals with a some-
what different, although related aspect of a similar
problem.

The present paper is organized as follows. In
section 2 we derive equations describing the rota-
tional dynamics of complex structures. These in-
clude the general effects of inertial forces created
by rotation of the reference frame. Section 3
focuses on a general theoretical framework for
Lagrangian mechanics with damping. In section 4,
a simple structure consisting of a rigid body with
an elastic beam appendage is studied, and we
present what we believe is the simplest reasonable
continuum mechanical model of such a system
undergoing three degree of freedom rotations. The
asymptotic steady state dynamics for this system
are studied in section 5, and in section 6 we
present a detailed analysis of the qualitative dy-
namics of a closely related model having only one
rotational degree of freedom.

2. The rotational dynamics of complex structures

In this section we will derive equations of mo-
tion for a class of structures consisting of elastic,
fluid or rigid components. While these equations
are completely general, they are most useful in

describing any structure whose configuration is-

conveniently specified by the position of the struc-
ture with respect to a moving coordinate frame
together with the position of that frame in space,
Le. relative to some fixed inertial system. We fix
an orthonormal basis forming an inertial frame

Fig. 1. The body frame is translated and rotated with respect
to the inertial frame.

(“space frame”), and choose a “body” coordinate
system designated by a set of orthonormal vectors
g1, &5, &;- Choice of the g;’s will depend on the
particular problem at hand, and it affects the
simplicity of resulting equations. In section 4,
where we treat an example of a rigid body with an
elastic appendage, we affix the body frame g; to
the rigid body, although other choices are possible
6].

[ ]The position and orientation of the body frame
(with respect to the chosen inertial frame) may be
described at each time ¢ by an element of the
special Euclidean group, SE(3,R), represented by
a 4 X 4 matrix

X(t)=(Ygt) y(lt))

(see fig. 1), where Y(¢) € SO(3) is an orthogonal
matrix describing the orientation of the body frame
and y €R? is the position of the origin of that
frame in space (cf. [5]).

Therefore, if a point P is given by the vector u
in the body frame and by vector U in the space
frame, then u and U are related via

U= Xa,

where U= (V) and &= (¥).

The positions of various elements of our flex-
ible structure relative to the body frame will
be described by a vector function u(z,t)=
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u(zy, z,, z4, t) denoting the position at time ¢ of
each particle whose “unperturbed” position is at
z=(zy, 25, Z;). Here “unperturbed” can mean
either initial or undeformed, depending on one’s
choice. In section 4, z will denote the neutral
position of a particle of the flexible structure.

In summary, we consider systems whose con-
figuration space is given by {q}={(Y, 4, y)} =
SE(3) X C=SO(3) X R?® X C, where C= {u(-, )}
is a suitably defined function space whose ele-
ments are functions u(z) describing the configura-
tion of the body relative to the body frame.

We describe now the kinematics of the system
and give an expression for the kinetic energy. The
evolution of the matrix X(r) € SE(3) can be de-
scribed by a differential equation

(o) - (Y020 50))

where 2(7) is the skew-symmetric matrix

0 —w; W,
Q=] w, 0 —w;
—w, W 0

of angular velocities w; about the corresponding
body axes g;, i=1,2,3.

The inertial coordinates U(z, ¢) of a point P are
related to its body coordinates u(z, t) via

U(z,t)=Xa(z,t)
and the corresponding velocities are given by

—d—(7=Xﬁ+Xa,=(

Y(Qu+u,)+y
ds ’

0

where u, denotes the partial derivative with re-
spect to t.

The kinetic energy of the body is then given by
T(q,4) =4 [ 101> dm
B

=3 [I¥(Qu+u)+5| dm, (2.1)
B

where B denotes the point set comprising the
body (at time ?) described in the body coordinate
system, and dm is the mass distribution in this
coordinate system.

The kinetic energy of almost any rotating struc-
ture will be of this form, as it does not depend on
the constitutive relations governing the structure
itself. More refined dynamical models, as treated
in subsequent sections, will embody structural in-
formation in the expression for potential energy

V(g)=V(Y,u,y)

(which we assume to be independent of ¢).
Without specifying the form of V at this point, we
prove the main theorem of this section.

Theorem 2.1. Let A be defined by

A(t) = L((Qu%— u,)ul) dm,

where M, = 3(M — MT) denotes the anti-symmet-
ric part of a matrix M. Equations of motion of
any system whose configuration space is {¢g} =
((Y, 4, y)} =SO(3) X C X R? as above are given
by

A1) +12(0), 4(0] - [ (Y5uT),dm

=T-(Y"y),, (2.2)
2 3 T:: 4
u,+ Qu+ Qu+20u+Y'y=F— 5, (2.3)
2 - .. av
/Y(Q u+S2u+2.Qu,+u,,)+ydm=f— 3y
B
(24)
Y=YQ, (2.4)

where ¥V, is the matrix of partial derivatives
aV/3dY,,, and 8V /8u is the Frechet derivative of
V with respect to u. In the skew-symmetric matrix

0 -1 T
T=| m 0 -7
-7, T 0,
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7, is the net nonconservative torque applied to the
system about the body axis g,, F= F(z) is the
distributed nonconservative force density acting
on the particle positioned at u(z, t) expressed in
the body coordinate system, and f is the net
nonconservative exogenous force.

Remark. In subsequent sections nonconservative
forces will arise due to viscoelastic damping,

Before giving the proof, we rewrite these equa-
tions so as to provide a clearer picture of the
physical situation. Let w=(w;, w,, w;)T be the
angular velocity of the body frame expressed in
that frame; w is related to the angular velocity
matrix £ = Y'Y as follows:

0 —wy; W, W,

2= Wy 0 —w |, w=|®w|,
- w
Wy, W 0 3

Denote by S the operator taking a skew-symmet-
ric matrix £ into vector w: S =w. One easily
verifies the following:

Lemma 2.1. Given any pair 4, B of skew-sym-
metric 3 X 3 matrices and any pair u, v of 3-vec-
tors, the following identities hold:
(i) S([4, B])= S(4) X S(B);
() S(uT—ovu)=vxu
(i) Au= S(4)Xu.

Applying the operator S to eq. (2.2) and using
lemma 2.1 on egs. (2.2)-(2.4) we obtain

Corollary 2.1. Equations of motion (2.2)-(2.4) are
equivalent to

a(t) +w(1) Xa(t) + /Bu(z, 1) X Y~ Y5(¢)dm

=s(7-(v"'vy),), (2.5)
Uy toX(@Xu)+oXu+20Xu,+ Y
4
=F—FJ, (2’6)

L[Y(wX(wXu)+cb><u

+2w><u,+u,,)+j5]dm=f—%¥, (2.7)

where a is defined by
a(t) =fu>< (u,+ @Xu)dm.
B

Written in this way eqs. (2.5)-(2.7) give an
explicit description of the inertial forces on the
mechanical system viewed in the moving body
frame. Introducing the derivation D=d/d«(-) +
w X (), we obtain yet another rendering of these
equations.

Corollary 2.2. Equations of motion (2.2)-(2.4) are
equivalent to

[ux(Du+¥5)dm=s(7-(v"17,),),

(25)
D%u+ Y_lji=F—g—I;, (2.6)
/B(YD2u+)’i)dm=f—g—I;. 2.7y

The motions of any complex structure undergo-
ing free or forced rotation are described by egs.
(2.5)—(2.7). This formulation is thus fairly general,
and it can incorporate external forces and torques
(due, for example, to gravitational and magnetic
fields) and internal forces (due, say, to actuation
of joints or the constitutive properties of the
material). In the next section 3 we will incorporate
dissipative effects in this formulation, and in sec-
tion 4, we shall develop a complete dynamical
model of a system where the constitutive relations
are those of a simple damped beam.

Proof of theorem 2.1. The proof will be given in
two parts: First, the treatment of the inclusion
Y € SO(3) as the holonomic constraint onto SO(3)
as a submanifold of GL(3), with an appropriate
modification of the Lagrange equations (lemma
2.2), and second, the utilization of the left-invari-
ance of (the rigid path of) kinetic energy to sim-
plify the resulting equations (lemma 2.4).
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We would like to write the equations of motion
of the structure in the Lagrangian form

d dT 9T av
395 g~ " ag 1=(Lwy)

An appropriate modification of the Lagrange
equations is needed, however, to account for the
fact that Y is constrained to the submanifold
SO(3) ¢ GI(3). Such a modification is unnecessary
if the Lagrangian equations are expressed in terms
of a local coordinate system on the constraint
manifold—cf. [1], page 77. This approach ignores
the symmetry in our system of equations, how-
ever. The following Lemmas 2.2 and 2.4 are key to
our proof of theorem 2.1:

Lemma 2.2. Any extremal ¢(t) of the action
fL(q,¢)dt with ¢ constrained to a submanifold
M, of a Riemannian manifold M satisfies the
differential equation

4 9L _ oL\ _
"a\'d: 9§~ 3¢ )"

where =, is the normal projection from T,M onto
T, M,.

We omit a straightforward proof. Correspond-
ing to the three components of ¢=(Y,u, y) we
obtain three components for the equations of mo-
tion:

d T 0T VvV
Y(EW‘WJrW):O’ (2.8)
d 8T T 4
T sa  du T Su (2.9)
d dT oT av
TR T T (2.10)

where P, is the orthogonal projection from
TyGI(3) onto T,SO(3) in the trace norm (A4, B)
= Tr AYB. Here 94T/3Y, dT/9Y are the
derivatives with respect to the standard Rie-
mannian structure on TGL(3); they can be repre-
sented as matrices of partial derivatives: T/3Y =

(8T/8YU), and dT/dY =(3T/9Y;;), 8T/6u de-
notes the Frechet derivative of T with respect to
the distributed parameter u. The expression for
the projection P, is provided by

Lemma 2.3. For any Y € SO(3) and 4 C T;Gl(3)

PyA=Y(Y 4),, (2.11)
where X, = 3(X— X7T) is the anti-symmetric part
of X.

Proof. This follows from decomposing the Lie
algebra of gl(3) as the orthogonal direct sum of
symmetric and skew symmetric matrices. (gl(3) =
so(3)@®so(3)*) |

Lemma 2.4. Suppose T is a left-invariant function
on TGIl(n), ie. suppose there is a function K
defined on gl(n) (= the Lie algebra of Gl(r)=
space of real n X n matrices) such that T(Y,Y) =
K(2) where @ = Y™'Y. Then for (¥, Y) € TSO(n)

d T 9T d
oG gy -5~ v(d a0,

where M = (dK/32),, and dK/382 is the deriva-
tive of K with respect to  evaluated at 2 = Y~1Y.

Remark. There is an orthogonal direct sum de-
composition: gl(n) = so(n) ® so(n)*+, where so(n)
= the Lie algebra of n X n skew-symmetric
matrices, and where orthogonality is defined in
terms of the trace form inner product {4, B) =
Tr ABT defined on gl(n). If the function K ap-
pearing in the statement of lemma 2.4 can be
decomposed as K=K, + K, where K, depends
only on the ith component (i =1,2) in this or-
thogonal direct sum, then M = K/({2), where by
K/ we mean the derivative of K; with respect to
the natural differentiable structure on so(n) de-
fined in terms of the Killing form.

Proof. d(dT/3Y)/dt and 3T/3dY may be
thought of as elements in the cotangent bundle
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T*Gl(n). Making the usual identifications, the
standard Riemannian structure on Gl(n) may be
prescribed explicitly in terms of the trace form,
and we may write d(7/3Y)/dt, dT/3Y and
dK/d8 all as n X n matrices

d T, [ d(dK\ 19K

Ty ) [E(aﬂ) 8 39]

aT (Y 1)TaK

For (Y,Y) &€ TSO(n), we have (Y"")T=Y and

QT = — @, and the result follows from lemma 2.3.
|

The proof of theorem 2.1 proceeds as follows.
Using left-invariance of the first term in the ex-
pression for kinetic energy (cf. (2.1))

T= %fBuszu gl +2(Qu+ u, Y) + |92 dm,

we obtain eq. (2.2) as a consequence of lemma 2.4.
The remaining equations (2.3) and (2.4) follow by
direct computation from eq. (2.9) and (2.10). We
omit the details.

3. Lagrangian mechanics with damping

A major advantage of Lagrangian versus New-
tonian mechanics is the invariance of Lagrange’s
equations with respect to coordinate changes; it is
this invariance that facilitates significantly the de-
rivation of our equations of a motion. It is thus
desirable to have the extension to the dissipative
case. Such a modification is described in [9, 11];
we reproduce it here in a slightly more general
form.

Let D(q, ¢) be the so-called dissipation func-
tion defined as follows:

4D, = rate of dissipation of energy per second.

(One can think of D, as the generalized dissipa-
tion force, and ¢ = velocity. The above simply
says: velocity - force = power.)

Let L(q,¢) be the Lagrangian of the system.
The equations governing the system are

d
T7Ly— L+ D;=0. (3.1)

Remark 3.1. If D is quadratic in ¢ (as will be the
case in the application presented in the next sec-
tion), then
D = 44D, = }(rate of dissipation).

Egs. (3.1) are consistent with the definition of D,
as shown by

Theorem 3.1. If E(q, q) is the total energy of the
system, then

d N
5;E(4,4) = —dD;.

Proof. E is given by the Legendre transform* in
gof L:

JdL
E= q(?q L.

Differentiation by time gives

. JdL JdL . . .
E= q8q+th(Bq)_qu—Lq'q=_qD¢i>
we used eq. (3.1) in the last step. [ ]

Eq. (3.1) has the same invariance property as
the conservative Lagrange equations.

Theorem 3.2 [11]. The dissipative Lagrangian sys-
tem (3.1) is invariant under the change of vari-
ables g = q(Q). More precisely, if g(t) satisfies
(3.1), then Q(¢) satisfies equations of the same
form:

d .
%o~ %+ 25=0, (3.1)

*Usually F is expressed as a function of g, p=9dL/3g; we
keep ¢ rather than p here.
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Fig. 2. A rigid body with cantilevered beam attachment.

where £(Q, 0) = L(¢(Q), 4'(Q)Q) and 2(0, 0)
= D(q(Q), 7(0)0).

Proof. A simple calculation shows

d L a(d
agg—$Q+.@Q'=q (Q) (ELq_Lq'I'Dq)-

4. A rotating rigid body with a beam attachment

Consider the spacecraft depicted in fig. 2. The
key features of this structure are a rigid body to
which a flexible cantilevered beam-like appendage
of length [ is attached.

As we have mentioned in section 2, we affix the
moving frame to the rigid body. More specifically,
we place the origin of the frame at the point of
attachment of the beam and align the z, = z-axis
along the undeflected beam. Viewing this canti-
levered beam as essentially a one-dimensional ob-
ject, we describe the elastic deformations u(z;, t)
=u(z,t) with respect to the¢ coordinate axes
(24, 2,, 2;) =(x, y, z) depicted in fig. 2. More pre-
cisely, u(z, t) is the position of the particle whose
neutral position is at (0,0, z). The decomposition
of the system into the rigid part and the elastic
beam corresponds to the decomposition of kinetic
energy (2.1) into the sum of rotational and transla-
tional energies of the rigid part and the energy of
the beam. (Note that u(-, ¢) restricted to the rigid

component is just the identity mapping for all 1)
We have

T= 10w+ m, yTYQE + im, |2

+3 [ Iv(u+u) +5] dz,
0

where S(2)=w, ¢ is the center of mass of the
rigid body in the body frame, m is the mass of
the rigid body, we have scaled the linear mass
density of the beam to be one, and the inertia
tensor with respect to the body frame is given by

z yz z

where I is the moment of inertia with respect to
the x-axis, etc. (cf. [1]).

Since the beam is clamped at the origin of the
(x, y, z)-doordinate system and free at its other
end, the following boundary conditions are as-
sumed:

du, 9%u;
u,(0,1) = 5 (0,1) = =51, 1)
d3u, ,
-SE =0, i=12, (4.1)

and u5(0,7) = du,(l,1)/dz=0. These boundary
conditions are standard in the theory of clamped-
free beams. Here u,, u,, u; are the deflections:
u=(uy, Uy, 2+ u;). Note that u; is not the z-
coordinate of u.

The equations of motion for our rotating satel-
lite are obtained by incorporating (2.5)-(2.7) into
the formalism of Lagrangian mechanics, as dis-
cussed in the previous section. Thus we look for
extremals of the Lagrangian L=T-V with
kinetic energy 7 given above and potential V
given by the strain energy

/ 144 2 14 2
V() =4 [ o Cuf) + paus

3
+ps(us)] dz, =5, (4.2)
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where only quadratic terms were retained and the
material is assumed to obey a linear Hooke’s law.
Here p, (respectively p,) gives the bending elastic-
ity within the xz-plane (yz-plane respectively),
and p; is the Hooke’s constant giving the beam’s
stretching elasticity. Unless the beam is abnormal-
ly thick, p; > p,, p,. The dissipation function is
given by

fl

D=D(u,i)

/
b Raaf) + ko)’ + ke (3)° dz,
dJ

d

=5 = (4.3)
where 4/, 45 can be thought of as the rates of
change of appropriate curvatures, while %} is the
rate of change of the contraction coefficient u}.
The k,’s are positive constants reflecting the rates
of energy dissipation due to deformation of
material in the beam.

Remark 4.1. It might seem at a first glance that
the first two terms in the integral (4.2) should be
replaced by a quadratic form (in u{’, u%),

a(ul”)2 +2bu ul + c(uﬁ')z;

however, by properly turning the body coordinate
system around the z-axis, we can diagonalize this
form. In fig. 3, the x-axis is chosen along the
direction in which the beam bends most easily
(1) < p,); consequently, the beam offers the stiffest
resistance to bending within the yz-plane.

z Vs

Y

Fig. 3. A beam with elastic coefficients p; < 5.

Remark 4.2. We must point out that the beam
was assumed to be of uniform cross section. Ex-
pression (4.2) would have to be modified to in-
clude the beams with variable cross sections like
the ones show in fig. 4. The modification is in fact
quite simple: one would only have to replace the
first terms in (4.2) by a quadratic form with z-
dependent coefficients. In the case of a helical
beam we would take the matrix

(a i)EAEA(z)=R—1(u”'1

OR
b 0 w7

cosa sina ) by

where R(z) is a rotation matrix ( .
-~ Sina cos o

z-dependent angle a = const - z.

Remark 4.3. To incorporate torsional deforma-
tions of the beam, we could introduce the torsion
angle a(z; t), which is the angle formed between
the x-axis and the projection onto the xy-plane of
the segment rigidly connected to the beam so that
in the unperturbed position of the beam it is
attached at (0,0, z)T and is parallel to the x-axis.
Thus the variable a(z; ¢) describes a normal bun-
dle of the beam. Potential energy of the beam is
given by

V= %j;l((R_luRu”, 0"y

+us(u5)* + py(@)’) dz,

where p = diag(p,, u,), p, is the torsional elastic-
ity coefficient, and v = (uy, u,).

——

Fig. 4. Beams with variable cross section.
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A slightly more subtle remark regarding our
model with potential energy defined by (4.2) is
that it does not involve potential terms incorporat-
ing tensile forces into the model. Our equations of
motion (4.4)—(4.6) are somewhat different from
those that would be obtained using one of the
so-called ‘geometrically exact’ beam theories, and
in particular they do not include terms corre-
sponding to the dynamical stiffening noted by
Simo and Vu-Quoc ([15]). While such terms may
be important in analyzing certain transient re-
gimes, we do not expect that they will significantly
change the qualitative picture that emerges from
the analysis carried out in the next two sections.
Thus to keep our discussion maximally lucid, we
eschew the complexity involved in more detailed
structural mechanical models, and we refer to the
work of Antman and Nachman [2] and Simo and
Vu-Quoc [15] for further analysis of the structural
mechanics of beams.

The following theorem is a straightforward con-
sequence of the results presented in the previous
two sections:

Theorem 4.1. Given the system depicted in fig. 2
and described above with kinetic energy (4.1),
potential energy (4.2) and dissipation function
(4.3), the equations of motion are given by

Da+ (mb5+f'u) XY Y=0, (4.4)
0
D >u+pdu+kdu+ Y =0, (4.5)

& oy +¥e) + (YD 4 jds=0 (4.6)
d[2 mby c '/(; urTydz=9, .

where the quantities in these equations are given
as follows. D( )=d( )/dt+ w X( ), a(t)=
To(t) + [juxX (Du)dz, I is the inertia tensor in
the body frame defined above, m, is the mass of
the rigid body component, ¥ = ¥S~Y(w) (with
S(-) is as defined as in lemma 2.1), and 4 is the
differential operator defined by 9 = (a7, 32, — 92),
p=diag(p,, gy, p3) and k= diag (ky, ks, k).

Egs. (4.4)—(4.6) are equivalent to

l .
ch+w><1w+/u><[u,,+w><u+2w><u,
0

+wX (wXu)+ Y‘lji] d:z

+m X Y =0, (4.7)
U, +oXu+2wXu,+wX(wXu)

+pdu+kdu+Y =0, (4.8)
my + Y(/(;Iudz+ mbE) =c'+ ¢, (4.9)

where m, denotes the mass of the rigid body
component, and m denotes the total mass of the
body—beam system. Since the mass density of the
beam has been normalized to be 1, we find m =
[+ my. (4.7) can be further rewritten, using (4.8),
as

[ 0
Id>+w><1w——fu><[,u8u+cau]dz
0
+mEx Y =0 4.7y

One easily checks that the total angular momen-
tum f(y+ Yu)Xd(y+ Yu)dtdm is conserved,
either using Noether’s theorem or by direct com-
putation.

Remark 4.4. 1f the center of mass of tue system is
at rest with respect to the space frame, we may
assume that ¢’ =¢” =0.

We indicate the physical meaning of the terms
in the equations (4.7)—(4.9). The sum of the first
two terms in (4.7) is interpreted as the rate of
change of the rigid body’s angular momentum.
The second term in the brackets gives the inertial
force on the beam due to the body’s angular
acceleration, the third term is the Coriolis force,
the fourth is the centrifugal force and the last term
is the D’Alembert force. Thus eq. (4.7) expresses
the conservation of the total angular momentum
in space expressed in the body’s coordinate sys-
tem. Eq. (4.8) is just Newton’s law for the beam
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expressed in the non-inertial body frame (the
D’Alembert principle)—it accounts for various in-
ertial forces. Eq. (4.9) expresses the conservation
of the linear momentum of the whole system. It is
important at this point to make the following
remark:

Remark 4.5. There is an apparent paradox associ-
ated with eq. (4.7)’: one might expect to be able to
express the integral term in terms of u and its
derivatives at z = 0, since the body feels the beam
only through the attachment point. As it turns out,
this expectation is not met. In formulating our
continuum mechanical model of the beam, we
have neglected certain effects such as torsional
deformations. The implicit rigidity in our model
leads to this nonlocal character in the equation.

5. Asymptotic dynamics of a rotating elastic
structure

In this section we begin an analysis of the
asymptotic behavior of the body-beam struct-
ure described in the preceding section. For finite
dimensional dissipative mechanical systems,
LaSalle’s invariance principle [10] can be used to
show that states asymptotically approach a
minimal invariant subset of the zero set of the
dissipation function discussed in section 3. In
section 6, it is shown that this type of analysis
may be extended to certain infinite dimensional
systems with features in common with our
body-beam model described by eqs. (4.4)—(4.6).
While we do not prove that all solutions to
(4.4)-(4.6) tend to the zero set of the dissipation
function D as defined by equation (4.3), we do
offer a more or less complete characterization of
the set of asymptotic equilibrium states (by which
we mean the set of solutions to (4.4)-(4.6) for
which the equality D = 0 also holds). We prove, in
particular, that in asymptotic steady state the beam
displacement function u(-, -) does not depend on
t. Moreover, it is shown that asymptotic equi-
librium angular velocities are constant vectors

parallel to the principal axes of the steady state
inertia tensor. This means that the motion of the
system is a pure rotation with no precession. This
is the content of the following theorem:

Theorem 5.1. Solutions of (4.7)-(4.9) which are
asymptotic equilibria (i.e. solutions which also
satisfy D =0 with D as defined in (4.3)) have the
following properties:
(i) there is no dependence on the time variable

t in the beam function: u(z, t) = u(z);

(ii) the angular velocity w is a constant w_;

(iti) the equilibrium angular momentum is a
constant, a_, =J_w,, with the equilibrium inertia
tensor of the combined body-beam system given
by

Jo=I+ [wTuE - wdz - m(CIC,E - C,CT),
0
(5.1)

where FE = the identity matrix and C, =
(1/m)(Mm¢ + f{udz) is the center of mass of the
body-beam system (expressed in the body frame).

(iv) equilibrium rotations are aligned with a
principal axis of the equilibrium inertia tensor,
and thus

J 0, =Aw,, (5-2)
where A is an eigenvalue of J_.

Proof. To prove (i), note that for asymptotic equi-
libria, [k,(2])? + ky(45)? + ky(a5)*dz = 0.
Hence, @} = a4 = &} =0, and the result follows as
a consequence of the boundary conditions.

Using the time independence of u, we show that
corresponding values of w are constant. Since
u, =0, eq. (4.8) may be rewritten

oXut+twX(eXu)+pdu+Y ly=0.

Differentiating with respect to z at z=0 and
using the boundary condition du/dz =k =
(ky, ko, k3)T=(0,0,1)T at £ =0, we obtain

oXk+wxX(wXk)+pdu,(0)=0.
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Denoting the last term by (c,, ¢,, ¢;)7, rewrite this
as

Wy T Wy, cy
Wyt wwy =1 —c |, (5.3)
w% + w3 €3

Multiplying the first two components by w; and
w, respectively and adding we obtain

Co0] = €Wy = B 1@1 + (yw,. (5.9)

From the last component of (5.3) it follows that
the right-hand side is zero, and then (5.4) together
with the last component of (5.3) implies w, and w,
are constant, if ¢; and ¢, are not both zero.

To establish (ii) in the case that ¢; =¢, =0, we
shall compare the constraint

w%+ w%=c3, (5.5)

with the constraints provided by the conservation
of kinetic energy

W =T (5.6)

and the conservation of magnitude of angular
momentum

| 2= M2 5.7

If these three polynomial equations have finitely
many solutions, then one of them will be the
desired time independent w,. It thus remains to
investigate the case that the algebraic set specified
by these equations has a component of positive
dimension. To express (5.5)—(5.7) in terms of a
principal axis coordinate system associated with
J.» we choose an orthogonal matrix U such that
w = Uw satisfies

@] + a5@1@, + 0y3@,0,

(5.5)
(5.6)
(5.7)

—2 — — -2 _

+ a,w) + aypw,w; + a0y =5,
. —2 . —2 . —2 —
J1wi +jpws + ey =T,

=2 | 22, :2=2 _ ag2
Jiw] 05 +j5wy=M".

Any algebraic subset of (5.6)’, (5.7)’ having posi-
tive dimension must be symmetric with respect to
the origin. Hence we may assume a;,=a;3=
a4, = 0. Moreover, because the diagonal quadratic
forms (5.5) and (5.5)’ are related by a similarity
transformation, we may assume without loss of
generality, that a; =a,=1 and a;=0. If

1 1 0
det h L +0
i BB

then each triple of values c;, T, M? determines a
set of values w?, w3 and w?} uniquely. Thus, as
above, w, must be constant, establishing (ii). If
the determinant is zero, either j, = j, = j;, in which
case w, must be constant, or else there must be

constants A, A, such that

S Jt 1
ML | +X2| 73 =(1)-
J J2

Neither A, nor A, can be zero. The last compo-
nent implies that A, + A, j; =0, which allows us
to eliminate A; from this system of equations.
Both j; and j, satisfy the polynomial equation
—N,jjs + A, j2—1=0. Either j, =j, or else j, +
J» =Jj;- The second possibility is ruled out by
physical considerations. (It must always be the
case that j; <j, + j,.) Hence, j; =j, and the equa-
tions of motion are

j1_j3
= WAy,
1 Ji 2W3
—j3_jlww
2 71 1%3s
&, =0.

Since j;# 0, these equations are not consistent
with (5.3) unless w, = const. This concludes the
proof of (ii).

(iii) follows from a direct computation using
(4.4) and (4.6). It may also be obtained as a direct
consequence of the parallel axis theorem.
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(iv) follows since w,, must satisfy w,, X J =
0. |

Corollary 5.1. The asymptotic equilibrium beam
function u_(-) and the asymptotic equilibrium
angular velocity w_, are related by egs. (5.1), (5.2)
together with the fourth order system of ordinary
differential equations

piu=—-92(u-C,), (5.8)

where c,, is the center of mass of the body—beam
system in the body frame, u = (u,, u,, u; + z), and
S8, =w,, and where the boundary conditions
are as prescribed in section 4.

Proof. In light of theorem 5.1, eq. (4.8) may be
rewritten as

pou=—-Q2u—Y Yy

From eq. (4.9) (in which ¢’ = ¢’ = 0) we see that
y(t) = ~Y(t)C,. Moreover, since Y satisfies
Y(t) = Y(¢)£2,,, we have that Y(1) = Y,e%". Then
J=—Y()Q%C, and Y~ Y= —Q2C,, proving the

corollary. ]

Remark 5.1. (5.8) prescribes a nonlinear boundary
value problem since £, depends on u_(-) through
eqgs. (5.1) and (5.2). Some idea of the complexity
involved in explicitly determining u,(-) may be
gleaned from our solution to the model problem
described by eqs. (6.1)-(6.3) in the following sec-
tion.

Remark 5.2. A detailed analysis of the way in
which the dissipative dynamical system (4.4)—(4.6)
evolves toward steady state is beyond the scope of
this paper. Nevertheless, a heuristic description
which makes contact with the classical theory of
rigid bodies may be given as follows. For a rotat-
ing rigid body there are two well known conserved
quantities: the kinetic energy E, and the magni-
tude of angular momentum |M|. If M represents
the angular momentum vector with respect to the

body frame, then the energy E=iM"I"!M is a
quadratic form in M with constant coefficients
and the conservation of energy confines M to an
ellipsoid, resulting in fig. 5a. If a dissipative elastic
appendage is present then M, while still confined
to a sphere, will move to smaller and smaller
energy ellipsoids, as indicated in fig. 5b. For the
purpose of this heuristic discussion we ignore the
infinite-dimensionality introduced by the beam.

It should be noted that the basins of the two
sinks S, and S, in fig. 5b are interlaced, and it is
difficult to predict which sink of M will appear if
M(0) is near the maximum energy point N. This
somewhat delicate phenomenon is said to have
been overlooked in the design of the Explorer II
mission. The satellite oriented itself along the
proper axis, but in the direction opposite to the
desired one.

It must also be noted that the picture in fig. 5 is
valid for moderate |M| only, and it undergoes
bifurcations as |M| is increased. These bifurca-
tions are due to buckling of the beam at higher
angular velocities. Such a phenomenon is analyzed
in complete detail in a model problem in the next
section.

6. Bifurcations, stability and dissipation in a model
problem

In this section we illustrate two interesting phe-
nomena—bifurcations and the trend to the
predetermined angular velocities in the simplest
possible setting. To bring the underlying phenom-
ena into focus, we look at a simplified model,
thereby minimizing technical details while retain-
ing several interesting features. We will see that
the example considered below is an infinite-di-
mensional Morse system. It is similar to the gen-
eral body-beam system considered in the preced-
ing sections. We also point out an unexpected
connection between this problem and that of
studying bound states of a nonlinear Schrédinger
equation, cf. [14].
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Fig. 5. Momentum spheres in the conservative and dissipative cases.

Fig. 6 shows our model consisting of a disk with
a beam attached to its center and perpendicular to
the disk’s plane.

The disk is constrained to rotate around the
z-axis without friction, so that the angular
momentum of the system is conserved. The beam
is constrained to the z-u-plane, and all the deflec-
tions are parallel to the u-axis. Equations of mo-
tion of the beam, including internal damping, are
pu, +pu,,,, +ku,,  =wlu, (6.1)

zzzzt

w(Lluuzdz+I)=M, (6.2)

u(0,1) =u,(0,2) =u,,(1,) =u,,(1,1) =0,
(6.3)

where p, k characterize elasticity and damping
respectively, and eq. (6.2) expresses conservation
of angular momentum, I being the disk’s moment

Fig. 6. A model problem with 1 rotational d.o.f.

of inertia. From now on we set p=p =1 to sim-
plify notation. Steady-state solutions will satisfy
the ordinary differential equation

—u,,,, +w*u=0. (6.4)
The steady-state equations define a nonlinear ei-
genvalue problem with M as a parameter, the

nonlinearity lying in the u-dependence of w in
(6.2).

Remark 6.1. The stationary problem (6.4)-(6.3)
admits a revealing variational formulation: its
solutions are the critical points of total energy

E=1Io*+ /1(u222+ wru+u?)dz (6.5)
0

when the angular momentum M is fixed, as one
easily checks. This has a simple physical explana-
tion: As the beam vibrates energy is dissipated.
Ultimately the vibrations are damped out, and the
total energy of the system is extremized. Actually,
for some exceptional (in a sense which we make
precise in theorem 6.1) initial conditions the limit-
ing energy value will be not minimal, but rather
critical. (See theorem 6.1 and fig. 5.) We note also
that

E= —/Ol(um)zdz. (6.6)
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Remark 6.2 on stability. The same variational for-
mulation suggests a stability criterion for the dy-
namical system (6.1)—(6.3). Namely, consider the
space S of all triples (u,#4,w) with angular
momentum M, ie. satisfying (6.2). If the sta-
tionary solution x4 = (%,0, w) minimizes total en-
ergy (6.5) on S, then this stationary solution is
stable, even in the undamped case. This means
that for all initial data (u,u,,w),_, in § suffi-
ciently close to the minimal (u,0, ) (in the energy
metric) the solution will stay close to the minimiz-
ing solution x,, for all time. This is quite similar to
the standard minimal energy criterion of Lagrange;
here, however, the energy is minimal only subject
to the angular momentum being constrained. This
minimality is guaranteed if the following condi-
tion holds: E,, + AM, >0 on the tangent space
to M =const. at the point x,, where A is the
Lagrange muiltiplier: M, =AE,.

This is the idea behind the energy—Casimir
method, which is the second derivative test in the
presence of the constraints and which is applicable
in the infinite-dimensional settings. This method
has been used to establish stability in a variety of
problems (see, e.g., the work and references in
Krishnaprasad and Marsden [8]).

A complete picture of the behavior of our model
system, in particular of the global phase portrait
and its bifurcations, is given by theorems 6.1 and
6.2 below. A perhaps surprising consequence of
this result is that the sysiem selects a discrete set of
angular velocities for its stationary rotations inde-
pendent of the angular momentum M. Another
aspect of this result is that our model is an in-
Jinite-dimensional Morse system.

To state our first result we combine (6.1) and
(6.2) into a single nonlinear equation

u,tu,,, +ku,,  =o(u)u,

144 zzzz

where w(u) = M/(||lul|>+ I), ||u||*>= [{u®dz. This
can be rewritten as a system

W 4wy v —

w= a(v> - ( —d%u—-9d%+*(w)u) = F().
(6.7)

Theorem 6.1. Qualitative behavior of the system.
Assume that k> 0, i.e. the damping is present.

There exists an infinite sequence 0 < w; < w, <

- = oo of preferred angular velocities associ-
ated with the problem (6.7) with boundary condi-
tions (6.3) such that if the angular momentum M
lies in the interval (M,, M, ;) = (Jw,, Iw; ), the
problem (6.7), (6.3) has k distinct nontrivial sta-
tionary solutions (u, v) = (u;(z),0), 1 <i<k, and
a trivial solution (u, v) = (0, 0), with angular veloc-
ities w(u,)=M/(I+ [tu?dz)=w;, 1 <i<k and
w(0) = M /I. These solutions are depicted in fig. 7.

The solution with the smallest angular velocity
is dynamically stable, i.e. any solution of (6.7),
(6.3) with nearby initial conditions remains close
to it for all time, in the L?-norm given by

I, @) || =11, 0) || = /01<u2+02)dz.

Stationary solutions with higher angular velocities
are unstable, and furthermore, ith solution (in the
order of increasing angular velocity) (¢, 9) = (u;, 0)
has (i — 1)-dimensional unstable manifold; this di-
mension coincides with the number of zeroes of
u;. In particular, if M <M, = Iw;, only one mode
u =0 is present and is stable. As M crosses the
bifurcation values M,, the system undergoes a
series of pitchfork bifurcations shown in fig. 8.

There have been several recent studies of the
evolution of solutions to infinite dimensional sys-
tems toward equilibria (see Dafermos [4] and ref-
erences therein). Theorem 6.2 below shows that
under mild (physically reasonable) assumptions
solutions of our systems approach the equilibrium
states described above.

Uy

ug=0

\ Uz
-u,

Fig. 7. Solutions to (6.1)—(6.3).




J. Baillieul and M. Levi / Rotational elastic dynamics 57

ul s uy uy

Fig. 8. S denotes stable equilibria, and u;, u,,... denote un-
stable equilibria with 1 —,2 —,... dimensional unstable mani-
folds. The numbers and L?-norm of equilibria depend on the
parameter M.

Theorem 6.2. Fix M >0 and let k>0, say k=1.
Let H™(0,1) denote the Sobolev space of real
valued functions defined on [0,1] whose deriva-
tives up to order n are square integrable. Any
solution w(t) of (6.7) with wuy(z), vo(z) €
H®2(0,1) tends in the L>norm as ¢ — oo to one
of the stationary solutions from theorem 6.1 (see
fig. 9).

Remark 6.3. The rather detailed results of this
section are derived under assumptions of smooth-
ness in the spatial variable on the functions u(¢, x)
defining beam configurations. No claim is made
that these are the weakest possible assumptions
under which our analysis could be carried out. On
the other hand, it is clear that strong smoothness
conditions such as these are physically reasonable.

Proof of theorem 6.1. 1) Existence of k+ 1 solu-
tions for M, <M <M, . Stationary solutions
satisfy the nonlinear boundary value problem
(6.3)—(6.4). There exists a sequence 0 < w; < w, <

\~ ‘l‘
F \
€ qulty) u
. ue
€
i ~. N ~. —
3 3 /€ g

Fig. 10. Solutions which remain e-close to {v =0} must be
e-close to a stationary point.

. of angular velocities for which this problem
has nontrivial solutions (the eigenfunctions of
d4/8z* with boundary conditions (6.3)) which we
denote by c,e;, ¢, arbitrary and |le,(z)|2=1.
Define M, = Iw;*. Freedom of choice of c; is used
to satisfy the angular momentum constraint (6.2),
which becomes

w(c2+1)=M.

This can be solved for ¢, if and only if M > Jw, =
M,; setting u,= c,e; proves the existence of k
solutions if M > M,. One additional solution is
obtained by setting u, ., =0, w,,;=M/L

2) Stability of stationary modes. We restrict our-
selves to the undamped (k = 0) case, as the dis-
sipation does not affect stability of stationary
modes. The governing equations can be written as

M

HuHTI u=A(u). (68)

U= —U,,, t+ (

*M; is the total angular momentum when the beam is
undeflected, since the straight beam’s (u = 0) contribution to
the angular momentum is zero.

!
1
t
Oe 0 o——e> .0 0@0 0 0
! 1

0<M<M, M, <McM,

M, <M< Mg

r13<r1<r14

Fig. 9. Global phase portrait of the system (6.7), (6.3). Indices show the dimension of the unstable manifolds, which are depicted by

arrows.
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The dimension of the unstable manifold of the
mode u,(z) is given by the number of positive
eigenvalues of the linearization of the operator
A(u) at u=u, This linearization is given by the
Gateaux derivative A’(u):

M\2
)+ 1) °

A(u)v= —a“v+(

L AME
(> +1)° "7
where d=3/9z and (u, v) = [fu(z)v(z)dz.
At u=u, we have

BUEA/(ui)U

= —0%+ wv— 4} M Yu,,v)u,.

The last term in this expression is a scalar multiple
of the orthogonal projection of v onto u;. Com-
paring B with the operator C given by

Cv=—9%+ wh,

we see that the spectrum of B can be obtained
from that of C by replacing the eigenvalue 0 of C
corresponding to the eigenfunction u, by
—4w!M~Yju,)|% Thus the eigenvalues of B are

2,2 2 2 2_ 2
W — W], W —Wy,..., W — Wi_q,

—4IM 7 H[ul|?, W - @y,
of which precisely /i — 1 are positive. This shows
that the dimension of the unstable manifold at the
stationary solution u; is (i — 1). |

Proof of theorem 6.2 consists of two steps:

(1) Showing that for any € > 0 the solution w(t)
enters and stays in an e-neighborhood (in L? norm)
of the zero set of the dissipation function. This set
is {(u,v): [l dx =0} = {(u, v): (u(x),0),
ue H12Y; see (6.6).

(2) Showing that if w(r) stays in an e-neighbor-
hood of the zero set of {v =0}, then w is e-close
to one of the stationary points of the flow, fig. 10.

]

Proof of step 1. Pick €¢>0, and consider two
neighborhoods of {v=0}: A= {(u,v):]||v]l2<
€} and A7 ,. Our solution w(t) enters A , for
some ¢t > 0 with necessity: otherwise for all ¢ large
enough we would have

E= -j(;luzzz,dz= —/Olvzzzdz
< —Aofolvzdz < —AO(%)Z, (6.9)

resulting in E(¢) » — o0, which is a contradiction.
Here A, is the smallest eigenvalue of 3*=
(8*/dz*) with boundary conditions (6.3).

Thus to prove that w(¢) stays in A, forever
after some 7> 0 it remains only to exclude the
possibility of infinitely many trips between /4, ,,
and the exterior of 4, see fig. 10. We will do so
by showing that each trip results in a loss of
energy at least AE > 0 depending only on € and
w(0) at each crossing, so that w(¢) can afford only
finite number of trips.

Let t,,¢, be two consecutive crossing times of
the boundaries of A and 4 ,. We have

2|t~ t1|)\0(%)2»
(6.10)

(1
B() = ()| = [ ['v2.az

where we have used the fact that [fv?dz > (¢/2)*
and the Poincaré type estimate as in (6.9). It
remains only to provide a lower bound on the trip
time |¢, — #,|; it is provided by the upper bound on
the velocity w(¢) which is the result of the
smoothness assumption. [ ]

Lemma 6.1. Any solution w(t) = (u(z,t),v(z,1))
of (6.7) with uy(z), vy(z) € H1?(0,1) has velocity

bounded in the L? norm: ie. there exists C =
C(ug, vy) > 0 such that for all 1> 0

LEQw () [* =ljoli2:

+||-3%u— 84u+w2(u)u||iz< cx
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Proof of this lemma is given in the appendix.
By the choice of #;, ¢, and using lemma 6.1, we
obtain

f’ZF(w(s))ds

h

5 <[w(n) = w(n)|=

<|t;~ ty|sup||F|| < Clt, — ty,
>0

implying

€
2 — 1|2 5,
which together with (6.10) proves that w(r) stays
in A, for all ¢ > T(e).

Proof of step 2. We show now that if w(z) stays in
A, for all > T(e) then it must tend to an equi-
librium point of the flow (6.7). More precisely, we
will show that for every 8 > 0 there exists an € > 0
such that if ||v|| <€ for all 1> T(¢) then for some
equilibrium solution w, = (u,,0) we have |Ju,—
ull 2 <6 for all > T(e€). Our strategy is to show
that if a solution is v(z) not close to an equi-
librium, then its velocity v(¢z) must grow, thus
taking it outside the neighborhood .4, leading to
a contradiction.

Assume the contrary: There is some § > 0 such
that for every e>0 there is a t,=1,(¢e) > T(¢)
such that although

[v(e)l<e forall t>T(e), (6.11)
we have
luzo) — u =8, (6.12)

for every equilibrium u,. The idea is to show that
being far from any equilibrium causes an increase
in velocity thus causing ||v|| > € (a contradiction).
The details are as follows.

(6.12) implies for f(u)= —d%u + w?(u)u:

1/ Culeo)) | 2 Mu(tg) = ucll= A8, (6.13)

for some A > 0 independent of 8, if we choose &
small enough (which we do).
We have (cf (6.7))

lo(e) = v(to) 2>

f, f(u(s))ds

, (6.14)

fta“v(s)ds
to

From the proof of lemma 6.1 it is clear that there
exists C>0 such that ||d%|2<C, for ¢ large
enough; without loss of generality we assume that
this already holds for ¢ > ¢,

We have from (6.14)

o)1= | e+ Ot 1)

f, ‘f(u(s))ds

forall t>1,. (6.15)

Furthermore, if ¢/, ¢” are sufficiently large, and
if
lu(e”) —u(e’) || < Ve

holds, then

17 Cule))y = £ (u( ) | < 31 f () -

This can be seen from the proof of lemma 6.1
which shows that all the harmonics of sufficiently
high order decay exponentially, with w(¢) tending
to a finite-dimensional subspace of L2 X L2
Applying this remark to (6.15) with ¢’ =1, t”" =1,
we obtain the final lower bound on v, using (6.13),

lo ()l = (e = 16) | f(u(te)) [| - €1+ C)(2 = 1,)
2 (1= 1))[$A8 - (1 + C)],

as long as

”u(t) - u(to) ” < ‘/E_

Using this estimate on the velocity v(z), we will
show that w(#) leaves the box ||v|| <€, ||ju — u(ty)||
< Ve through the “horizontal” boundary, i.e.
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llo(z*)|| = e for some first exit time ¢* > ¢, see fig.
10. This will result in the desired contradiction.

To see that ||v|| = € is reached first, we note that
otherwise

lu(e*) = ulto) || = Ve,

and

e(t*—1y) >

j’*u(z)dz“

fo

=flu(e*) —ulto) | = Ve,

ie. the time required to reach the wvertical
boundary is large

t*r—1,= —1-—.
=T
Using this in (6.16) - which is valid for z5 <7<
t* —we obtain
1

(ol

which is a desired contradiction, if we pick €
sufficiently small. ]

[%—NS—((1+C) > €,

This shows that given any & > 0 there exists an
€ > 0 such that if w stays in A7, then u(z, t) is less
than & (in L%{0,1]) from an equilibrium solution
u. of (6.8). Since the first step in this proof showed
that for e-neighborhood of the zero set {v =0} of
the dissipation function, this proves theorem 6.2.

Appendix
Proof of lemma 6.1

The nonlinearity in (6.7) is Lipschitz continuous
in L%(0,1), and thus standard existence results
imply that u(x, ¢) and v(x, t) € H'?(0,1).

We may thus expand u(x, t) in the orthonormal
basis {e,(x)} of the eigenfunctions of a4 (which
is a self-adjoint operator on L?(0,1)) with the

boundary conditions (6.3):

oo

u(x,1)= X a,(t)ec(x),

k=0

which converges in L2(0,1). System (6.1) is
equivalent to a series of ODE’s for the am-
plitudes:

. . _ a2
dp+Ad+Aa,=wa,

{X,) are the eigenvalues of 34, or

a=b
. ’ Al
{b=—>\b—}\a+w2a, (A1)

where we have dropped the subscript k for the
sake of brevity.

It suffices to prove that there exists C > 0 such
that

84ullB+1d %)= X N(ak(r) +bi(2)) <C
k=0

forall 1>0. (A.2)

We note that the expansions of d*u and 9% in
the basis {e,(x))} converge in L% This shows that
||F(w)||12 is bounded for all ¢, since the bounded-
ness of the last term w?(u)u in L? is obtained as
follows:

2 () ulia= ot ()l < )4nu||2

<

M)“ 1 .40 (M,
<\ =ld u”LzS(_) Ag“C.
(T)= ,
To estimate a,(2), b,(¢) we use the smoothness of
the initial conditions to get an upper bound on

a,(0), b,(0): estimates
192ugll2: = L a2(0)X, <c,

192 vgllF2 = L bz (0) X% <e,
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imply

|2, (0)1, 15, (0)] < eA;>.

We will show that for all ¢ > 0 the estimates
ENOIREAGIE v (A.3)
hold, for k large enough, thus implying (A.2)
YNl < YA =Y A2 < 0

since A, ~ k*.
To show (A.3) we rewrite (A.1) as
Zi=Az+ Rz,

where

Introducing the Lyapunov matrix

’ ng >

we obtain

ad—t(Bz, z)=—(z,z)+((R™B+ BR)z, z)

IA

—(1—||IR™B+ BR|))(z, z).

An explicit computation gives

and thus ||R™B+ BR|| <“const.”’ /A, since w <
M/T.

We have

%(Bz,z) < —(1 - %St')(z,z)
< _%(29 Z)’

the latter inequality holding for all A =X, large
enough.

Now, the minimal eigenvalue p of the positive
definite matrix B is estimated from below as

p> % (for A large enough).

We have for all ¢> 0 and for k large enough

a5 (2(8), 2(8)) < (Bz(1), 2(1))
< (Bzy, z¢) < (20, 2),

or

ai(1) +bi(1) <27, (a}(0) + 57(0))

2NN S =200 5.

This implies (A.3). [ ]
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