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A PERIOD-ADDING PHENOMENON*

MARK LEVIY

Abstract. A simple geometrical explanation is given for the ‘“period-adding” phenomenon observed in
the 1927 experiment of van der Pol and van der Mark and refined recently by Chua and Kennedy. The
problem is reduced to a simple circle map. In the second part of the paper some previous results are outlined
to show how the same phenomenon arises in a class of van der Pol-type systems with periodic forcing, and
in conclusion some recent topological results are applied to such systems.
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1. Introduction. In this paper we use a geometrical approach to explain the
period-adding on two examples, one a neon tube circuit studied experimentally in
1927 by van der Pol and van der Mark and very recently by Kennedy and Chua [18],
and the other a class of van der Pol-type equations. Period-adding phenomena manifest
themselves in the additive rather than multiplicative changes of periods of periodic
solutions. Perhaps the earliest observation of this phenomenon (described in detail in
the next section), due to van der Pol and van der Mark [29], dates back to 1927, as
was pointed out by Chua.

In recent years, period-adding has been observed in some real-life systems, in
particular, in the Belousov-Zhabotinsky reaction-diffusion equation [27],[28], and in
various electronic oscillators other than van der Pol’s [6]. Pikovsky [26] has given a
simple one-dimensional mapping that models the behavior of the Belousov-
Zhabotinsky system and where the period-adding effect is geometrically transparent.
Kaneko [16] has studied the standard circle map and observed some period-adding
behavior. It should be pointed out that the standard van der Pol equation in the
relaxation case and with periodic forcing exhibits period-adding as well, as described
below. This was well known in the early 1940s from the work of Cartwright and
Littlewood [20].

Despite the considerable interest in the subject, there seems to have been no
rigorous geometrical study of period-adding in a differential equation. In this paper we
give a simple geometrical (and rigorous) explanation of the phenomenon first dis-
covered in the 1927 experiment of van der Pol and van der Mark [29], repeated with
greater precision by Kennedy and Chua [18], by deriving dynamical equations and
analyzing them geometrically. We also point out how some results of Cartwright and
Littlewood can be interpreted in terms of period adding and restate some topological
explanations of the behavior in the van der Pol-type systems.

Our analysis illustrates the fact that period-adding is due to a certain hidden but
simple near periodic dependence of a certain return map on the parameter. As it turns
out, a circle map associated with the Poincaré map has the property that its image
rotates with the change of parameter. We give a geometrical explanation of this
rotational property in two types of differential equations. This phenomenon was
explained before for one of these two types.
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Period-adding occurs on a larger scale both in parameter and in phase space than
the period-doubling, as will be shown below. Actually, period-doubling sequence
(together with many other bifurcations) is embedded in the gaps between the period-
adding plateaus in the first of our two examples. In that sense it is a macroscopic, or
global phenomenon.

Many details of experimental observations will be explained by a simple circle
map using geometro-analytical arguments, answering, among others, the following
questions:

® Why do periods change additively, i.e., increase by a fixed multiple of the

forcing period T—in the two examples below, by 2T and T, respectively—when
a parameter crosses certain nearly equally spaced short bifurcation intervals?
® Why is noise observed in these short intervals?

® Why do stable periodic solutions have odd periods?

® What is the geometrical reason for the existence of the “Angel’s staircase”?

® What causes the gaps between the steps for one parameter range and the overlaps

for another (Fig. 1(¢))?

2. Background, results, and open problems. The first published account of the effect
appeared in 1927 and is due to van der Pol and van der Mark [29], who considered
a periodically forced relaxation oscillator depicted in Fig. 1(a). The neon tube’s I-V
characteristic is a nonsingle-valued function depicted in Fig. 1(b). Resistance R was
chosen large, and parameters C, R were adjusted in such a way that the frequency of
unforced oscillations coincided with the forcing frequency (50Hz). In the absence of
periodic forcing, the current seeps through the very large resistor slowly charging the
capacitor (the relaxation stage). Once the voltage on the capacitor exceeds the threshold,
the neon tube’s resistance drops and the capacitor quickly discharges causing a flash
of light, whereas the cycle begins anew.
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F1G. 1. (a) The relaxation oscillator of van der Pol and ver der Mark. (b). The neon tube’s I-V characteristic.
(c) Observed periods dependence on the capacitance in the neon tube oscillator. (d) Observed period’s dependence
on the forcing amplitude b in equation (1).

While increasing C from its initial value, van der Pol and van der Mark observed
a “period-adding staircase” sketched in Fig. 1(c), where the periods increase by the
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same amount at each jump, rather than double. The staircase contained approximately
40 steps, and unlike the period-doubling sequence, its plateaus did not follow the
Feigenbaum ratio and were of roughly comparable lengths. For that reason we could
call this an “Angel’s staircase.” Another feature of the Angel’s staircase in Fig. 1(c)
is the existence of gaps for low values of C, narrowing for larger values and giving
way to the overlapping of plateaus, resulting in hysteresis. In § 3 we will explain these
phenomena after deriving equations for the circuit. It is an interesting problem as to
the specifics, perhaps computer-assisted, of a similar explanation for the recent new
examples of [6] and [25]. It should be pointed out that there has been no explanation
for some more complex patterns, such as the appearance of Farey trees in the oscillation
patterns [21].

A very similar behavior is observed in another relaxation oscillator (triode coupled
to an RLC circuit with positive feedback) with periodic forcing, now carrying the name
of van der Pol:

(1) ex+(x*—1)%x+ex=bsint.

Here ¢ is small but fixed and b is the forcing amplitude, which will be the variable
parameter of interest. Electronic experiments on this system showed that as the forcing
amplitude b was increased through the interval (0, 3), the following behavior occurred
(Fig. 1).

First, a periodic solution was observed whose period (2n+1)27, n> 0 an integer,
was an odd multiple of the period 27 of the forcing term.

This odd period persists as b increases through the interval A,, (Fig. 1) until the
periodic solution disappears and is replaced by noise in the short ““chaotic” gap C,.
In the next interval B, the noise is replaced by another periodic motion of odd period
(2n-1)27 two forcing periods shorter than the previous period. This pattern
(--+A,C B,CA,- ) continues until b comes close to 2. For b> % we observe the
1:1 lock-in, i.e., the (globally attracting) periodic solution of the same period as the
driving term. If b is decreased back through the intervals B, C, A, we observe a hysteresis
phenomenon: on the way down in each B-gap we see a (2n— 1) T-periodic solution
whose odd period is 2T shorter than on the way up (Fig. 1).

In §8 4 and 5 we will give a short exposition of the earlier explanation [19] of
this phenomenon for the class of systems

(2) X+ d(x)%+ex=bp(t)

similar to van der Pol’s equation (1) but with the damping and forcing terms modified
to preserve the qualitative behavior while at the same time allowing for a rigorous
analysis. It seems rather clear from numerical evidence and from heuristic arguments
that the modified equations (2) have the same qualitative behavior as the classical van
der Pol equation (1). Our modification consists of the requirement that both ¢ and p
be greater than a certain constant (say, 1) outside sufficiently small neighborhoods of
their zeros. We will further insist that the symmetry properties of ¢(x) and p(t) be
the same as in the original van der Pol equation (1): ¢(x) is even, p(t) is T-periodic,
odd, and satisfying p(¢t+ T/2)=—p(t) (odd with respect to t=T/2), p(t)>0 for
0<t<T/2 and ¢(x)<(>)0 for |x| < (>)1.

All the proofs for the statements in §§ 4 and 5 can be found in [19] together with
various other aspects of the problem, such as the description of chaotic behavior via
symbolic dynamics, bifurcations, structural stability, etc.

It is a difficult and important problem to do the same analysis for (1). There is
the famous work of Cartwright and Littlewood [20], and some very interesting
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asymptotic results of Grasman and others [9], but no rigorous proofs for the full
picture are available. There are finer features in the period-adding sequence that were
observed in electronic, numerical, and chemical experiments [6], [18], [21], [28]. These
questions will be addressed elsewhere.

3. Period-adding in the neon tube relaxation circuit.
3.1. Derivation of the equations. With the notation of Fig. 1(a), we obtain, using
Kirchhoff’s laws:

(3) —E+(i,+i,)R+V=0
(4) V= 12RN + Em’

where V = C™'q, is the voltage on the capacitor, g, = the charge, ¢, =i,, E,, = E, (1) =
E,(t+ T) is the externally imposed periodically changing voltage, and Ry = resistance
of the neon tube, which is the function of the voltage applied to the tube as shown in
Fig. 1. Since that voltage is W=V —E_, we have Ry = Ry (W),

Substitution of (4) into (3) gives

. V_Ell)
—E+|:11+ R ]R+V:O.

N
Using i, = ¢, = CV, we obtain the desired equation

. 1 1 E E,(1)
5 CV+H|=+— | V="o
® (R RN) R Ry’

where Ry = Ry(W) =Ry(V —E,) is the nonlinearity.

3.2. Geometric discussion of the dynamics. To analyze (5) it suffices to understand
the form of the Poincaré map P:V,_¢— V,.+ (T =27/ being the period of E,(1)),
and its dependence on C. The finer details of the shape of P will be studied elsewhere.'
Nevertheless, the mechanism of period-adding can be explained with only partial
information on P. The associated circle map turns out to have a near-periodic depen-
dence on C, with periodic change resulting in an increase of the period by one.

To make this more explicit, we begin with the autonomous case. Our first important
observation is that the phase space of (5) is not a line, but a ““‘Riemann line,” consisting
of two rays {V:—o<V=V,} and {V: V_< V <o}, (Fig. 2). This is due to the
nonsingle-valued character of Ry: for V_= V = V, the neon tube may be either on or
off, i.e., we may have Ry (V) =00 (tube is off} or Ry = R, <0 (tube is on).

In the relaxation stage, when the capacitor is charging and the tube is off, we
have Ry =00, sothat V+(V —E)/CR =0 and hence V- E (and slowly, since RC > 1),
but before getting there, it reaches the right endpoint V=V, provided V,<E, thus

1 [}
! < a
-

F1G. 2. Phase flow of equation (5).

! We can, in fact, solve (5) on the linearity intervals for each solution, and derive the shape of the map
by estimating the switching points. This approach, however, suffers from two drawbacks: first, it does not
explain what is really going on, and second, it cannot be extended to the case when R, is not a piecewise
constant function.
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turning on N. Next, the capacitor quickly discharges through N, according to

vl (1 L1 ) (v E_\_,

C\R R, 1+R/RL.>— ’

where R, is the conducting finite value of Ry, so that V- E/(1+ R/R,), but before
getting there it crosses the lower threshold V= V_, if E/(1+R/R,)<V_, at which
point the charging restarts.

As C grows, the period of the limit cycle grows as well.

Let us now consider the nonautonomous case of periodic forcing E,, (t) # 0, whose
effects on the phase flow are two-fold: first, the discontinuity points V=V, +E, of
Ry =RN(V—E,) oscillate and second, V has an oscillatory part E, /Ry involving a
nonlinearity as well. This difficulty of having two simultaneous effects can be resolved
by a simple change of variable

W=V-E,_,
which turns (5) into
. 1 1

(6) CW+<E+R~> W =p(1), Ry = Ry (W),

N
where the forcing

E-E ,
ty=——""—CE,
p(t) R

is now independent of V. W has the physical meaning: it is simply the voltage on the
neon tube.

The difficulty present in (5) has been removed: p(t) is now independent of the
phase variables W, W and the nonlinearity Ry (W) is independent of t. The phase flow
SJor W can be obtained from the autonomous flow for V discussed above simply by adding
the component p(t).

3.3. Reduction to a circle map. To analyze the Poincaré map P:V,_,> V,_r, we
choose a point V, and its iterate V, = PV, as the endpoints of the fundamental interval
I, which we will call the window, since the phase space is “viewed’ through it. Assume
that I belongs to the upper branch U—this can be achieved by a proper choice of Vj.
Define the return map R:I-1 as R(W)=P/(W)e I, where We I and j=j(W)>0
is the smallest integer for which P/( W) e I Identifying V, and PV, we transform the
interval I into a circle and the return map R into a circle map; we keep the same
notation I and R. Fixed and periodic points of R are also periodic for P, but the
information on the periods of P is lost in R. We will show how to recapture this
information in § 3.4. This temporary loss of information is the price for greater simplicity
of R in comparison with P.

To analyze the structure of the return map R we trace the evolution of the
fundamental interval I with the flow of (6). We only outline the analysis of the window
map R; the details can be filled in by using methods similar to [19].

Assume for the purposes of this discussion that —E,/R — CE, >0 for the first
half period 0<¢<T/2 and <0 for the second half-period T/2 <t < T. Every point in
the upper branch U in Fig. 3 undergoes a periodic left-right oscillation superimposed
upon a drift to the right, according to the equation CW+ W/R = p(t). The flow on
the lower branch L is so fast to the left—the discharge of C is almost instantaneous
for smaller values of C—that it overcomes the oscillations. Starting with the interval
I at t=0 we observe it moving to the right and stopping’ at t=t,,, shortly after

2 Of course, not all points of I stop at the same time, but this can be made precise.
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F1G. 3. Evolution of I with the flow of equation (6) and the structure of the window map R.

t= T/2; some point labeled 2=3 lands on the endpoint of the upper branch U (Fig.
3). All points between 3 and 4 had fallen off U and, after a quick trip through L,
reappeared on U again (Fig. 3). For the remaining part of the period f,<t<T, the
oscillation is in its leftward phase; the interval I is now torn at 2 = 3, with both segments
(12) and (34) traveling left on U. At t =T the motion stops and reverses direction;
before 1,,,+ T (%.p as defined above) the interval (12) falls off of U and reappears
on U again, as shown in Fig. 3 at t=2T. We see that the map P is discontinuous.
Tracing the evolution further poses no difficulty: as (12) and (34) drift to the right in
an oscillatory fashion, they also contract.

The resulting circle map R together with its graph is depicted in Fig. 3. As we
increase C, the images P’I (j fixed) move left, since larger C result in slower drift
(cf. eq. (6)). Equivalently, the image of the circle map rotates clockwise (i.e., against the
circle’s orientation). The change of shape during one rotation is small, in a sense that
can be made precise.

3.4. Period-adding. Each clockwise revolution of the image R(I) due to the change
in C results in the increase of the period by 1—indeed, one clockwise revolution of R(T)
is equivalent to the slide of the iterate P’/(I) to the left by the length of one step of
the P-iteration, and thus one more P-iteration is required to return to I This is in
complete analogy with the van der Pol-type equation considered below.

3.5. Explanation of the narrowing of the gaps. Van der Pol’s and van der Mark’s
experiments showed that for the capacitance C in the low range the staircase had gaps
(Fig. 1(c)). We explain this phenomenon here by tracing more carefully the time-
evolution of the window I. For smaller values of C the intervals (12) and (34) return
back to I in a smaller number of iterations and thus do not contract by much; as a
result the slope of the graph in Fig. 3 is not much less than one.

Consequently, there are gaps in C-values for which the return map R is fixed-point
free. As C grows, the intervals have more time to shrink, and thus the slope becomes
less and the gaps shorten—it is precisely what the experiments show! (Cf. Fig. 1(c).)
For C-values in the gaps the map R is fixed point-free, and we must observe higher
period fixed points or quasiperiodic or Denjoy behavior [17], which could be misinter-
preted as chaos. Indeed, our circle map is order-preserving (although discontinuous)
for the lower C-range and thus can exhibit no chaos.

The hysteresis phenomenon can be explained by the fact that for high values of
C the window map R becomes noninvertible and acquires two stable fixed points for
repeating C-intervals, as seen in Fig. 1(c). The detailed analysis of this effect will be
carried out elsewhere.
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4. The Poincaré map and the approximating circle map for a class of van der Pol-type
equations.

4.1. Preliminary construction. In this section we will summarize the geometrical
picture associated with (2). We do so at the heuristic level, avoiding precise statements,
to say nothing of the proofs (which are given in [19]). Equation (2) can be conveniently
rewritten as a system by setting the modified velocity y = ex+®(x), where ®(x)=

I; ¢ (x) dx:
™) X< (=), p=extbp(n).

Define the Poincaré (or stroboscopic) map P:(x, y),—o+>(x, y),—r. Qualitative
behavior of (2) is completely captured by the map P.

The map P has the following key geometrical properties (for the proper parameter
values, namely, for £ >0 small enough (and fixed) and for the forcing amplitude b
between 0 and 2m/p, not too close to the endpoints, where m = local maximum of
®(x) and p =, p,(1) dt=]; p_(r) dr):

® The map P has exactly two fixed points, one at infinity and another z,, close

(for small ¢) to the negatively sloped branch of y = ®(x) (Fig. 4).

Il

y = ®(z)

AN

/ N\

L
w
PL

F1G. 4. Vertical dimension of the annulus A=2m — bp.

® Attractor of P lies entirely inside an annulus A of thickness <v'e, sketched in
Fig. 4. That is, any point z # z, or o enters A and stays there after sufficiently
many iterations by P.

® The points in A “circulate clockwise” under P-iterates. More precisely, the right
side r of A is (roughly speaking) contracted in the horizontal direction by
~e~"* and translated downward along the branch of ® by O(e). The lower
part of r of length O(¢) spills partly to the bottom and partly to the left part /
of the annulus. Similar statements hold for the left part I

The evolution of points is quite simple as long as they stay in I or r; it is the
transition from 1 to r and from r to | that is responsible for the interesting dynamics of
the system.

Remark. A superficial glance at period-adding. At this point our description of
the map is still extremely sketchy, but already we can give a heuristic indication of
the occurrence of period-adding. The total circumference of the annulus A depends
nearly linearly on b, whereas the average size of step under P-iterations is virtually
independent of b by comparison. Thus the number of P-iterations it takes for the point
to complete one trip around A decreases with b; in particular, periods of periodic
points could be expected to decrease with b.
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4.2. Reduction to a simple circle map. Now we give a more precise description of
the map P; it turns out to be of a surprisingly simple form in the end. We construct
a region w (in Fig. 4), which we will call the window, bounded by the two sides of r
and by a horizontal line L joining the vertical boundaries of r and its image Pl

The crucial property of w is that iterates of any point z # z, pass through w, and
hence do so repeatedly. It suffices, therefore, to trace the evolution of w under
P-iterations. This evolution is the central part of understanding the dynamics of the
system; it is depicted in Fig. 5(a), where the positions of w at different times are shown.

(a) mT + %

(b)

Q(w)

F1G. 5. (a) Evolution of the window w with time. (b) The antipodal return map defined by Q(z,)=
-Z(mT+T/2,0,2z); Q*°=R.

To determine the qualitative behavior of the Poincaré map P we must determine
how future iterates of the window w intersect w. To that end, we consider the window
map R:w- w defined by z > P’ze w where j = j(z) >0 is the smallest integer for which
the last inclusion holds. The only piece of information we lose by considering R instead
of P is the integer-valued function j(z), so we will keep track of it. The advantage of
looking at the window map R instead of P lies in the (as yet nonobvious) simplicity
of the reduced map. This simplicity is further enhanced by the symmetry properties
of the damping and forcing functions ¢(x) and p(¢), which imply that the window
map R is the second iterate of the “antipodal half-period return map” Q (of even
simpler form); we have the following lemma.

LEMMA. R=Qo Q= Q’ where the map Q:w-w is defined for any zew as
Q(z)=—Z(mT+T/2,0,z)ew, with Z(1, t,, z) denoting the solution of (3) at time t
which starts at z at time t,, and where m = m(z) > 0 is the smallest integer for which the
last inclusion holds.

Proof of this lemma is given in the Appendix.

The “square root” Q of the window map R has a surprisingly simple form, shown
in Fig. 5(b).

The choice of the window makes it natural to turn Q into an annulus map as
follows. The map Q is discontinuous, since the integer m(z) experiences jumps: a
point z'€ w near z € w may require one more (or one less) period T to reach —w. This
will be the case for precisely those points z€ w that land on the top or the bottom
boundaries of —w at some odd multiple mT+ T/2=(2m+1)T/2 of T/2. By identifying
the corresponding points on these boundaries we remove the discontinuity, while at
the same time turning w into an annulus; this is why we represent Q by an annulus
map. Since w is an extremely thin region for £ small (of width ~e’C/F2), the annulus
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map Q can be closely approximated by the one-dimensional circle map é shown in
Fig. 6.

The b-dependence of Q is surprisingly simple as well. Roughly speaking, as b
grows, the vertical size 2m —bp of A decreases; meanwhile, the size of the folds in
Fig. 5 remains nearly constant. This means that as b grows (from 0 to 2m/p) the folds
travel upward through the window w; this translates into the statement: as b grows, the
image Q(w) rotates clockwise (with angular velocity ~1/¢).> Each full turn of the
graph of Q amounts to the change of the integer m by one. This statement translates
for the circle map é in the obvious way.

| -y -
L - o

F1G. 6. Circle map Ofor different parameter values. Stable fixed points (marked by circles) for é correspond
to the sinks for the two-dimensional map Q, while the unstable fixed points of O correspond 1o the saddles of Q.

The next section contains the explanation of the geometrical cause of period-adding
for (2).

5. Explanation of period-adding and of other dynamical phenomena in a class of
van der Pol-type equations.

5.1. Period-adding and the ““Angel’s staircase.” As b increases (by an amount on
the order O(¢)), the image Q(w) undergoes one clockwise revolution (plus some minor
distortion); correspondingly, one less fold fits between w and —w (going clockwise)
in Fig. 3; equivalently, the corresponding points from w will require one more period
to get to —w, and two more to return to w. This explains the “Angel’s staircase.”

5.2. Odd periods. Briefly put, odd periods are due to the existence of the factoriz-
ation R = Q° Q (which in turn follows from symmetry properties of ¢(x) and p(1)).
More precisely, let z, be a fixed point for Q; this amounts to the fact that it takes time
mT+ T/2 to get from z, to —z,, starting at ¢t =0, and furthermore (by symmetry), it
takes the same time to get from —z, back to z,, starting on the half-period. Summarizing,
it takes time 2X(mT+ T/2)=(2m+1)T for the point z, to make one full revolution
and to return to its initial position, which explains the oddness of the period of the
periodic solutions observed in the van der Pol’s equation.

5.3. Noise. The noise observed in the van der Pol system can be explained by the
appearance of Henon-like attractors for Q for special values of be C,. That such
attractors should appear is clear from Fig. 5, where the position of the fold can be
controlled by b. Actually, for numerical purposes these attractors are one-dimensional,
and more can be said about them.

* The exact picture is, of course, much more complex in its details [19].
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For small ¢ the map Q is closely approximated by a circle map; in fact, for ¢ = .2
the difference is indistinguishable in double precision, and for numerical purposes we
can treat Q as a circle map. Jakobson’s results [15] on certain “typical” families of
one-dimensional maps provide the existence of absolutely continuous invariant
measures for “many” parameter values. This will be manifested as noise for the
equation. Actually, for smaller ¢ strange attractors for Q are confined to a very small
subset; this is due to the fact that the folds in the graph of O became sharp for small
e [19]. This noise is, in fact, hard to observe numerically, as confirmed by the
experiments by Flaherty and Hoppensteadt [7].

It should be emphasized that the mere presence of the horseshoes does not imply
noise, for instance, for b € B, the Poincaré map P possesses a horseshoe, corresponding,
however, to a zero measure set in the (x, y)-plane.

5.4. Devil’s staircase embedded in the ‘°Angel’s staircase.” Using the picture associ-
ated with the circle map é, it is easy now to explain the reason for the steplike character
of the dependence of the rotation number on b. As the parameter b grows from 0 to
2m/ p, the circle map will have alternately one sink for the A-intervals of parameter
and two sinks for the B-intervals of b. The corresponding solutions will have odd
periods (2n+1)T in the intervals A, and (2rn=1)T in the intervals B, ; the rotation
numbers for these solutions are given by 1/(2n+1) and are plotted in Fig. 1(d).

Bifurcations in the gaps. No experimental data are available for the bifurcations
of (1) or (2) in the gaps C,; we discuss some predictions from the general theory as
applied to the system in question, and mention a possible explanation of secondary
staircases observed in the circuit by Chua, Yao, and Yang [6]. Assume that b€ B,
begins to increase, entering the gap C,,. During the passage of b through the gap, the
interval of rotation numbers shrinks from [1/(2n+1), 1/(2r—1)] to the point 1/(2n+
1); the left endpoint of the interval remains fixed throughout the gap, whereas the right
endpoint’s evolution is given by the devil’s staircase. When the endpoint is rational
(which is the case for an open interval of b-values), it serves as the rotation number
of a stable periodic orbit. These orbits will be of period higher than the lowest possible
period 2n —1. It is most likely that precisely this phenomenon is responsible for the
secondary and higher staircases observed in the above quoted paper [6]. It must be
pointed out that the gaps contain, among other things, the period-doubling sequence.

5.5. Rotation numbers and symbolic dynamics. For b€ B, the set of all rotation
numbers forms precisely the interval [1/(2n+1), 1/(2n—1)]. This was proven in [19,
p. 71] by using symbolic description of the map Q for be B,. The idea of the proof
was to find an invariant Cantor set whose points correspond to bi-infinite sequences
{o;} =+1 and to observe that the rotation number r(z) of the point z is given by the
mean value p of this sequence: r=1/(2n+p) where

j=n
p=Ilim } o
n-00 ;2

Given an arbitrary number p e€[—1, 1] we can create an uncountable set of sequences
of +1 with that average;* consequently, there is an uncountable number of points with
any given rotation number in the interval [1/(2n+1), 1/(2n—1)]. In fact, we can speak
of both forward and backward rotation numbers, which can be arranged independently:
for each pair of numbers r,, r_ from the above interval there exists a point with r, , r_

*1t suffices to observe that p does not change even if an infinite subsequence o, of o, is altered
arbitrarily, provided the subsequence has zero density: k/j, -0 as k - co.
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as the forward and backward rotation numbers. In fact, there is an uncountable set
of such points, as we noted above.

The points in the Cantor set form the boundary between the basins of two attracting
periodic orbits of periods (2n + 1); these points cannot decide which of the two attractors
to approach, and they hesitate in their choice in a rather arbitrary way, according to
the symbols a;, leading to the nonuniqueness of rotation numbers.

For many (in some sense most) points in the Cantor set the rotation number
actually fails to exist—this is equivalent to the statement of the nonexistence of the
average value p.

An extensive computer-based study of basin boundaries has been carried out by
Grebogi, Ott, Yorke, and others.

5.6. Monotone twist maps. The aim of this short paragraph is to show how to
apply some recent results in Aubry-Mather theory [1], [2], [4], [5], [11], [12], [14],
[22]-[24] to (2). Poincaré map P turns out to be a monotone twist map (in proper
coordinates), as follows from the analysis of the linearized equations in [19]. Applying
the topological version of the Aubry-Mather Theorem [22] due to Hall [11] and
Bernstein [2], we conclude the existence of “minimal energy” orbits for any rotation
number between 1/(2m+1) and 1/(2m —1); in our case, the minimality is not metric
but topological: in a proper projection, the orbits are ordered as iterates of an invertible
circle map. One can specify symbolic sequences for the horseshoe map corresponding
to such orbits, using the results of [3], [8], [13].

Hall’s topological version [12] of Mather’s variational shadowing theorem applies
in our case as well, giving information on the nonwell-ordered orbits. According to
this theorem; for any sequence of periodic orbits there exists an orbit that shadows
each sequence for a prescribed number of iterations. We refer to [12] for the precise
statement.

We remark finally, that for be B, the two stable periodic orbits of periods
1/(2m+1), 1/(2m —1) are linked. According to a theorem by Boyland [4] the rotation
set includes the interval [1/(2m+1), 1/(2m —1)], and furthermore, for any rotation
number p/q from that interval there exists a Birkhoff periodic orbit with that rotation
number.

Full analysis of the map has been obtained earlier by analytical methods, but
these topological theorems that have since appeared allow us to obtain partial informa-
tion without full analysis, using only the monotone twist property and the linking
property.

Remark. The above description allows for the virtually complete analysis of the
behavior of (3), of its bifurcations, etc. [19] (see also Guckenheimer and Holmes [10]).
Equation (1), in spite of its apparent simplicity, exhibits virtually all the phenomena
found in the mappings of the plane: horseshoes, Newhouse sinks, homoclinic bifurca-
tions, Henon-type attractors, Aubry-Mather sets (in the dissipative setting), etc.

Appendix. Proof of the Lemma R=Q - Q.
Step 1. Define the “half-period antipodal” map S by S(z)=-2(T/2,0, z), and
prove first that P =S S = S This follows from (A1) and (A2) below:

TT
(A1) Z(I,O,Z)=—Z<t+5,-2‘,—z>;

to prove this, we observe that both sides of (A1) are solutions of (7) by the symmetry
properties of ¢ and furthermore, they satisfy the same initial conditions so that (A1)
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holds by uniqueness of solutions. Furthermore, we have
(Az) Z(t, tlaZ(tI,IO,z)):Z(ts tO’z)a

for any ty, ,,teRand any ze R’. To prove this we note again that both sides of (A2)
are solutions of (eq. (7)), which moreover coincide for 1= t,, and hence for all .
Substituting = T/2 in (A1) we obtain

T T
(A1) Z(E’O’ z) =—Z(T,5, —z);

setting 1,=0, ¢, = 7‘72, t=T in (A2), we obtain
' T (T
(A2) Z<T’5’Z<E’O’ Z)>=Z(T,0, z),
or, by the definitions of P and S:
T
Z(T, > —S(z)) = P(z).

Applying (A1)’ to the left-hand side, we get the desired factorization
S(S(z))=P(z2).

Step 2. Define Q= S5>""", where m = m(z) is an integer-valued function defined
for each ze w as the smallest integer >0 for which $>"*'ze w. We note that Qz =
§*"*z=—Z(mT+T/2,0, z), as follows from Step 1. Indeed,

T
Qz=8""""z=808"z=80 P"z=S(Z(mT,0, z)) = —Z(mT+E, 0, z).

This, together with Fig. 3(a), makes it clear that Q:w - w is well-defined.
To complete the proof of the lemma, we break up R as follows. For any zew

def . stepl . . _ i N
Rz =Pz = §Y7=80"m71(§"+7) = §2U="~1(Qz) e w,

and since Qz e w, we have 2(j—m(z)) —1=m(Qz), so that R = Q0. ]
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