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An Inverted Pendulum: Defying Gravity (and Intuition)
If the  pivot  of the  pendulum (Figure 

1) is  vibrated  vertically  with  a suffi-
ciently  high frequency, then  the  pendulum 
becomes stable in  its  upside–down posi-
tion. This striking phenomenon, discovered 
and demonstrated by Stephenson in 1908 

[6] and redis-
covered in the 
1950s, is often 
referred to as 
Kapitsa’s effect. 
The Stephenson-
Kapitsa phenom-
enon explains 
the workings of 
the Paul trap; W. 
Paul received 
the 1989 Nobel 
Prize in physics 
for his invention 
of the particle 
trap now carry-
ing his name [5].

Wishing to 
observe the Kapitsa effect directly, I had 
originally planned to build a device to 
vibrate the pivot but fortunately realized, 
before spending time and money, that I have 
this device at home. The resulting demon-
stration can be seen online at https://www.
youtube.com/watch?v=cHTibqThCTU.

The inverted pendulum was V.I. Arnold’s 
favorite demonstration; he used an electric 
shaver which has a reciprocating arm inside.

Standard explanations via averaging the-
ory, or by computation of special cases such 
as in [1], are not intuitive. Here instead is a 
geometrical/intuitive explanation. In a nut-
shell, stability is due to the centrifugal force 

of a non–existent constraint, as explained 
below.

Figure 2 shows the pivot oscillating 
between two points (the amplitude is greatly 
exaggerated in this figure). We assume 
that the pivot’s acceleration is very large 
(thus so is the frequency); this 
means that the rod is under 
great tension or compression 
for most of the period. This 
great force acting upon the bob 
is aligned with the direction of 
the rod. As the leading order approxima-
tion, we assume that the bob actually moves 

in the direction 
of this force. 
This assumption 
forces the bob to 
travel in an arc 
AB of a tractrix, 
i.e. the pursuit 
curve.1

To summa-
rize, we con-
strained the bob 
to an arc AB. 
This constraint 
is somewhat 
innocent since 
it does not 
interfere with 

the huge push–pull force of the rod acting 
on the bob. Now the mass constrained to the 
curve pushes with a centrifugal force 
mkυ 2  against the constraint, Figure 4; here 
k is the curvature of the tractrix. This push 
is towards the top, suggesting that the top 

1 The tractrix is defined by the property 
that all the tangent segments connecting it to 
a straight line have the same length, Figure 3.

equilibrium is stable if this force overcomes 
gravity, i.e. if

            mk mgυ θ2 > sin ,
   (1)

           
where the bar denotes the average over the 
period; the meaning of the remaining quan-

tities is clear from Figure 4. To 
translate (1) into a useful crite-
rion, we substitute 
k L o= +θ θ/ ( ),  υ θ= +u o( ),2

and   obtain,2   for small θ :
                                                                   

                                                           
(2)

                        
u Lg2 > ,

         
the linearized stability criterion (see [3] for 
more details). Although this non–rigorous 
calculation looks suspiciously easy, it does 
give exactly the same result as the formal 
derivation due to Kapitsa, as reproduced in 
Landau and Lifshitz [2] and almost a page 
long. Incidentally, (2) 
turns out to be equiva-
lent to the stability con-
dition | |det F < 2 of 
the Floquet matrix F, 
providing a physical 
interpretation of this 
condition in terms of the 
centrifugal force of a 
non–existent constraint. 
To conclude, and as a 
side remark, a purely 
topological explanation 
of stability of the invert-
ed pendulum, in a dif-
ferent regime, can be 
found in [4].

2  making an additional assumption of small 
amplitude, allowing us to treat k as a constant 
along the short arc of the tractrix.
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Figure 1. The pendu-
lum is a point mass on a 
massless rigid rod.

Figure 2. The leading 
order approximation of 
the motion.

Figure 3. The trac-
trix, or the pursuit 
curve: all tangent 
segments have the 
same length.

Figure 4. The centrifugal force mkυ 2  of the 
non–existent constraint is responsible for 
stability.
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