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Telescopes and symplectic mappings
Symplectic geometry, tracing its origins 

to the work of Poincaré on Hamiltonian 
systems, and currently a very active field, 
reached a high level of abstraction. Here 
is a simple concrete example where “sym-
plectic” approach predicts and explains the 
following physical fact:

Any optical device (e.g. a telescope) 
which converts a parallel beam to a nar-
rower parallel beam must necessarily mag-
nify objects.1 

This, as I will show next, is a manifesta-
tion of the obvious fact that if an area pre-
serving a map squeezes in one direction, it 
must expand in another.

1 To maximize simplicity, I minimize the 
dimension to two. 

Figure 1: We place an axis x0  before the 
device and another axis x1  after. The entry 
data ( x0 ,α0 ) of a ray determine its exit data 
( x0 ,α1 ).

remarkable book [2]. And there are interest-
ing open questions that we do not address 
here on the relationship between recent 
results of symplectic geometry to optics.
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Figure 3: Narrowing of the beams causes 
widening of the angles between beams, i.e. 
the optical magnification.

3) in the x–direction, it must stretch in 
the y–direction. This y–stretching means 
that the angles between parallel beams 

are magnified. But this is pre-
cisely what the optical mag-
nification of objects amounts 
to. For example, the reason 
a telescope allows us to tell 
that a distant speck is actually 

a ship and not a dot is that it increases the 
angle between two 
beams, one from 
the stern and the 
other from the bow, 
thus making these 
beams fall onto dif-
ferent “pixels” on 
our retina.

The proof of 
area–preservation 

in the footnote, due to Poincaré, admits a 
“hands–on” palpable mechanical interpre-
tation, as described in [1]. More on sym-
plectic maps and lenses can be found in the 
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Any optical device (in two dimensions) 
– schematically, the black box in Figure 1 
– gives rise to a map which assigns to each 
ray’s entry data ( x0 , y0 ) 
where y0 = sinθ0 ,  the cor-
responding exit data ( x1 , y1 )
Parallel beams, e.g. CD and 
C’D’ in Figure 2, correspond to 
horizontal segments in the xy-
plane. Horizontal segments map under ϕ  to 

horizontal segments; moreover, ϕ  shortens  
these segments since the device narrows 
parallel beams, Figure 2. 

Now ϕ  is area–preserving.2 And since
ϕ  squeezes the rectangle ABDC (Figure 

2 To see why, consider the travel time 
T ( x0 , x1 ) (called the optical distance), and 
note that y T x xx0 0 10

= − ( , ),  y T x xx1 0 11
= ( , ),

subscripts denoting partial differentiation. 
Then for a closed curve γ 0  in the ( x0 , y0 ) 

Figure 2: Left: Beam CD exits as beam C’D’. Right: ϕ (CD) = C’D’.
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