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The aim of this short note is to give a simple geometrical proof of a result
due to Cushman and Kelley [4] giving a characterization of strongly stable
symplectic maps. The original proof relied on the use of normal forms.

The following is a slight reformulation of the main result of [4].

THEOREM. An infinitesimally stable' symplectic matrix A is strongly
stable iff its centralizer C(A) (in the set sp(n) defined below) consists of
stable matrices.

We recall first some definitions (see |3-7, 9, 10, 12]). Any 2n X 2n matrix
of the form

A =JH, J=<O 1), H = H
-1 0

is called infinitesimally symplectic; let sp(n) be the set of such matrices. Any
matrix 4 is called stable iff || e*'|| is bounded for all (positive and negative) ¢.
Matrix A =JH € sp(n) is called strongly stable if any matrix B = JK with
K = K" sufficiently close to H is stable.

Centralizer C(4) of a matrix 4 is, by definition, the set of all matrices in
sp(n) commuting with 4.

Before proceeding with the proof, we will need one perturbation result
4, 1].

LEMMA. Any matrix B € sp(n) sufficiently close to a stable matrix
A € sp(n) can be expressed as

B=S"'44+0C)S with C€ C(4),S=e", TE sp(n).

* Supported in part by the NSF Grant MCS-8212681. Present address: Department of
Mathematics, Boston University, Boston, Massachusetts 02215.
! Definitions follow the statement of this theorem.
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Proof of the Theorem (followed by the proof of the lemma). 1. Assume
that C(4) consists of stable matrices. Any B € sp(n) close to A can be
written as

B=S"'A4+C)S, CECA),

according to the above lemma. Therefore, B is stable, being similar to stable
matrix 4 + C € C(A4); strong stability of A4 is proven.

2. Conversely, assume that A is strongly stable; choose any B € C(4)
and show its stability. For ¢ small enough we have, for some ¢ > 0,

le I,  |le“**|| < c for all ¢,

since A is strongly stable. Using the fact that 4 and B commute (B € C(4)),
we have

”eeﬂf” — ”e—Ate(A+eB)I” < C2,

which proves stability of B. Q.E.D.

Proof of the Lemma. Introduce a map

M :ran ad, @ ker ad, - sp(n),
given by

M(T,C)=e "4+ C)e™;

here ad, X = {4, X]. Wishing to apply the implicit function theorem to M
near T = C = 0, we calculate its derivative: ’

DM(0,0)(T, C)= {4, T| + C E ran ad; ® ker ad , = sp(n).

The last equality follows from the fact that ad, is semisimple (i.e.,
diagonalizable), which in turn is the consequence of stability (and thus
diagonalizability) of A4.

This shows that DM(0,0) maps ranad, @ ker ad, onto itself; by the
implicit - function theorem for any B € sp(n) there exists T €ranad,,
C € ker ad, = C(A4) with

B=M(C,T)=e T(A+C)e’ =S"'(4+C)S5. Q.E.D.
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