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Particles with Negative Mass and the Krein–Moser Theory
Imagining objects with negative mass 

may seem like a scholastic exercise. But 
as it turns out, we can interpret some real 
physical phenomena as the occurrence of 
particles with negative mass.

As a glimpse of the strange world with 
negative masses, Figure 1 shows two mass-
es of equal magnitude but opposite sign 
connected by a Hookean spring.1 Initially 
all is at rest and the spring is stretched, 
pulling the masses towards each other. In 
response, the positive mass will accelerate 
to the right as expected; the negative mass, 

being pulled to the left, will accelerate 
against the pull, i.e. to the right as well. 
So the whole system will accelerate to the 
right, with the distance between the masses 
remaining constant.  Formally, the positions 
x and y of our particles satisfy
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where F is the force of the spring. Addition 
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x y− = constant (since  x y= at t = 0 ) as 
claimed, and subtraction results in
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showing that indeed the midpoint acceler-
ates at a constant rate F m/ .

This acceleration occurs with no exter-
nal forces applied and does not contradict 
Newton’s second law, since the total mass 
of the system is zero. The fantastic world of 
negative masses can have spaceships which 
require no fuel and no external sources 
of energy to accelerate in any desired 
direction (here the discussion is limited 

1  In defense of my sanity, I am not sug-
gesting that such masses are real; however, 
such imaginary masses arise in interpreting 
real physical systems.

to the one-dimensional world, but one can 
imagine a 3D construction along the lines 
of Figure 1, with the astronaut pushing or 
pulling on the right mass and controlling 
the direction of acceleration.) There is 
no contradiction with the conservation of 
energy since the kinetic energy of our sys-
tem remains zero and the potential energy 
of the spring remains constant at all times 
(with the initial conditions as specified).

Consider  now  the  regular  harmonic  
oscillator x x+ = 0,  with  mass m = 1 and 
Hooke’s constant k =1.  Multiplying both 
sides by −1 yields a mathematically equiva-
lent system − − =x x 0.  Physically, we can 
interpret this as describing the motion of a 
particle of negative mass attached to a spring 
with the negative Hooke’s constant. Until 
such a system is touched, it will 
behave as a normal mass-spring 
one. But when connected to a 
“normal” system—say, by a weak 
Hookean spring—it may result 
in an instability. Informally, we 
can trace the mechanism of this 
instability to Figure 1; if the positive mass 
“trails” the negative one, then the interac-
tion will cause both masses to accelerate. 
This is not difficult to see formally on a 
simple model of two harmonic oscillators 
connected by a spring with a small Hooke’s 
constant ε :
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so that x y+  behaves as a forced harmonic 
oscillator.  And the forcing 2( )y x− satis-

fies 
d
dt

y x y x
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2 0( ) ( ) ,− + − =  the equa-

tion of the harmonic 
oscillator with the 
same frequency and 
therefore in resonance 
with x y+ ,  causing 
the amplitude of oscil-
lations of x y+  to 
grow linearly.

All this is the tip 
of a very nice theory 
developed by Mark 
Krein and Jürgen 
Moser. In the 1950s, 
physicists working at Brookhaven National 
Labs made a puzzling experimental obser-
vation; a simple resonance consisting of 
two frequencies becoming equal led to an 
instability in some settings but not in others. 

Moser provided a beautiful 
explanation of this phenom-
enon [3], and it turned out 
that Krein had explained 
the same phenomenon a 
few years earlier [1]. The 
explanation boils down to a 

beautiful analysis of symplectic matrices; 
the details can be found in the cited papers 
of Krein and Moser or in [2].

To give the flavor of the Krein-Moser 
result, we recall that the spectrum of such a 
symplectic matrix is symmetric with respect 
to the unit circle, as illustrated in Figure 
2 (this fact is known as the Poincaré-
Lyapunov theorem). And thus a simple 
eigenvalue cannot leave the unit circle 
under small perturbation of a matrix; oth-
erwise, an extra mirror image eigenvalue 
would appear. A simple eigenvalue can 
only leave a circle if it meets another eigen-
value. But not every meeting of eigenvalues 
causes them to leave the unit circle.

 In the Krein-Moser theory, 
every eigenvalue is assigned a 
symbol + or – .2 The “direc-
tion of rotation,” as measured by 
the symplectic 2-form, gives the 
sign. And the beautiful result is 
that if two same-sign eigenvalues 
on the unit circle meet (under 
the deformation of a symplectic 
matrix),  they harmlessly “pass 

2  One need not limit the atten-
tion to simple eigenvalues, but I 
want to skip such details.

through each other,” staying on the unit 
circle, and thus not causing an instability. 
But the colliding eigenvalues of opposite 
sign “bump” each other off of the unit 
circle, as in Figure 3. And we can interpret 
these collisions in terms of particles of 
negative masses connected by springs with 
negative or positive Hooke’s constants. To 
summarize, the Krein-Moser sign of an 
eigenvalue can be interpreted as the sign of 
an imaginary mass.
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Figure 1. Two masses of opposite sign con-
nected by a spring. Acceleration happens 
with no external force applied.

Figure 2. The Lyapunov-Poincaré theorem: the symmetric 
spectrum of a symplectic matrix.

Figure 3. Collision of the same-sign eigenvalues does not lead to 
instability; collision of the opposite-sign eigenvalues does.
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