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Abstract. We investigate the planar three-body problem in the range where
one mass, say the ‘sun’ is very far from the other two, call them ‘earth’ and
‘moon’. We show that “stutters” : two consecutive eclipses in which the moon
lies on the line between the earth and sun, occur for an open set of initial
conditions. In these motions the moon reverses its sense of rotation about
the earth. The mechanism is a kind of tidal torque (see the ‘key equation’).
The motivation is to better understand the limits of variational methods. The
methods of proof are classical estimates and bounds in this asymptotic regime.

1. Introduction. Consider the planar three-body problem with Newtonian force
law. A syzygy is a collinear configuration of the three masses. Double collisions
count as syzygies, but triple collisions do not count. The rationale behind this
counting is that we can analytically families of solutions through binary collisions
[8] but not through triple collision. Non-collision syzygies come in three flavors,
1, 2, and 3 , depending on which of the three masses, 1, 2, or 3, lies between the
other two at the moment of syzygy. We associate to any non-collinear, collision-
free solution its sequences of syzygies, listed in the time order of appearance. For
example, a “tight binary” in which 1 and 2 move in a bound, nearly Keplerian orbit
while 3 moves far away will execute the syzygy sequence . . . 121212 . . .. A recent
theorem of one of us [14] asserts that when the energy is negative and the angular
momentum is zero then every solution has syzygies, with the single exception of the
Lagrange homothety solution. So syzygies are ubiquitous in this case.

A stutter is a syzygy sequence in which the same letter repeats itself, one or
more times in a row: for example: 112. From a variational perspective, stutters are
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perverse within the zero angular momentum problem. (See the next section.) We
would like to know how prevalent stutters are. Certainly there are some.

Example 1.1. A “brake orbit” is a solution such that at some instant t0 all
three velocities are zero. Brake orbits have angular momentum zero and energy
negative and so (excepting the Lagrange case) have syzygies. If the brake time is
t0 then the brake orbit satisfies xi(t0 + t) = xi(t0 − t) where xi(t) is the position
of the ith mass at time t. It follows that the syzygies immediately preceding and
immediately following the brake time are of the same type 1,2, or 3, (assuming these
nearby syzygies are not collisions) and so the orbit has a stutter in a time interval
containing the brake time. See Figure 1 for an example.

Example 1.2 As a special case of the previous class of examples, consider the
isosceles three-body problem in which masses 1 and 2 are equal. Start the masses
at rest in the configuration of nearly flat, obtuse isosceles triangle in which 3 is
place slightly above the midpoint of the edge 12. Then 3 will oscillate across the
12 edge a number of times before 1 and 2 collide. Consequently in such a solution
we will have a syzygy sequence 33333 . . .∗ where we put a ∗ to indicate collision.
A slight off-center perturbation of the initial configuration will resolve the colli-
sion into a quick “Kepler event”, yielding a non-collision solution with sequence
333333. . . .312 . . .. The initial isosceles solution has zero angular momentum and
negative energy, and we can arrange for the perturbed one to continue to have this
same angular momentum and energy.

Example 1.3. Within the non-zero angular momentum planar three-body
problem and its special limiting cases we have found three published instances of
stutters, or more precisely, of reversals of the 12 angular momentum. (See more
concerning the relation between reversals and stutters in the following paragraph).
Chenciner and Llibre [4] establish the existence of solutions having infinitely many
reversals within the restricted circular planar three-body problem. Their solutions
lie within their “punctured KAM torii”. Fejoz, in a series of two papers [6], [7]
establishes the existence of solutions having infinitely many reversals in the full
planar three-body problem. His solutions exist as a corollary of a thorough study
of the secular system and a careful application of KAM methods. Finally, reversals
are known to exist in the problem of two fixed centers.

The purpose of this paper is to establish the existence of another open family of
stuttering orbits within the zero angular momentum problem. We find the existence
of stutters (or angular momenum reversals) more surprising in the zero-angular
momentum problem than in the non-zero angular momentum problem, in part due
to their clearer connection to variational principles. Our methods and point of view
are perturbational, and so in a certain sense close to those of [4], [6], [7]. However,
our methods are more elementary in that we never invoke or even touch the KAM
theorem.

For the orbits of our family the distance r between masses 1 and 2 remains
relatively small over a long period of time while the distance of either 1 and 2
from the third mass remains very large. Masses 1 and 2, which we refer to as “the
bound pair” will execute nearly Keplerian motions about their common center of
mass. The angular momenta J1, and hence the eccentricity e of the instantaneous
Keplerian ellipses for the two close masses changes slowly, with J1 passing through
0 (and e passing through 1) at which time the orientation of the ellipse reverse, and
the masses traverse their instantaneous ellipses in the opposite directions. J1 = 0
corresponds to the collinear collision-ejection orbit in the 1 − 2 Kepler problem. If
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we think of 1 as the earth and 2 as the moon, then the moon’s orbit gets skinnier and
skinnier until the point where its sense of rotation about the earth instantaneously
stops and the moon begins to go around in the opposite direction while the orbit
widens out again! See Figures 1 and 2.

Our method here is perturbation-theoretic. Write r for the distance between the
two close masses and ρ for the distance between their center of mass and the distant
mass. Let rM be a ‘typical’ maximum value of r over some time interval, and let
ρ0 be the initial value of ρ. Then

ǫ = rM/ρ0 (1.1)

will act as the small parameter for our problem. If H1 denotes the energy of the
bound pair then we can take

rM = −β1/H1

where β1 = m1m2 is the Kepler constant occurring in H1. Let θ be the angle
between the Jacobi vectors, namely the vector ξ1 which joins 2 to 1 and the vector
ξ2 which joins the 12 center of mass to 3. Let PK be the period of the Kepler
problem associated to H1. (See Appendix 1 for formulae and precise definitions of
the quantities just discussed.)

Theorem 1.1. Consider the zero angular momentum three-body problem with neg-
ative total energy and any mass ratio. Let N be any positive integer. Then there
exist two open families of solutions having stutters. One family has syzygy sequence
(12)N11(21)N and the other family has syzygy sequence (21)N22(12)N . The length
of the time intervals over which this syzygy sequence is executed is 2NPK +O(ǫ) and
there are no collisions during this interval. The family is characterized by initial
conditions at a time t∗ between the stutter syzygies 11 or 22. Among these condi-
tions are that rM/ρ(t∗) < ǫ where ǫ → 0 as N → ∞, H1 < 0 i , J1 = 0, ρ̇ = O(1)
(as ǫ→ 0), and cos(θ) sin(θ) = O(1) 6= 0. If cos(θ) sin(θ) > 0 at t∗ then the stutter
for the family is of type 11, while if cos(θ) sin(θ) = O(1) < 0 at t∗ then the stutter
is of type 22. The only zero of J1 in this time interval is at t∗ and it is a transverse
zero.

The proof of the theorem relies heavily on two equations for J1:

J1 = r2
(

1 +O

(

1

ǫ

))

θ̇

and

J̇1 =
r2

ρ3
F cos(θ) sin(θ) F = O(1) > 0

The first equation requires the total angular momentum to be zero. The second
holds generally.
The main idea of the proof. In the motions we consider, the bound partners
1 and 2 travel rapidly along near-Keplerian ellipses, while body 3 is far away and
slow moving. The effect of body 3 is to add a weak and slowly varying gravitational
field to the Kepler problem 1-2. As a first approximation, freeze the position of
3, and approximate its gravitational field in a small disk including 1 and 2 by its
linear part. Upon choosing coordinates so that 3 lies on the positive x-axis this
additional force has the form ε(x, 0). Thus the vector ξ1 = (x, y) connecting body
2 to 1 evolves, in our first approximation, according to

ξ̈1 = −ξ1/|ξ1|3 + ε(x, 0), (1.2)
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Figure 1. The curve traced by the short Jacobi vector for a brake
orbit. The three bodies have masses m1 = 7,m2 = 1 and m3 = 13
in units with the gravitational constant equal to 1. The initial
positions at the brake time (indicated with the dot) are (x1, y1) =
(325, 10), (x2, y2) = (325,−70) and (x3, y3) = (−200, 0) and the
initial velocities are all zero.

A stutter corresponds to two consecutive crossings of the positive x–axis.
We explain stutters in this simpler system, and then outline our later steps in

the proof of stutters in the full system. Figure 2 illustrates the motion ξ1(t) = reiθ

with ξ1(0) in the first quadrant and with ξ̇1(0) ‖ ξ1(0). The key observation is that

the negative tidal torque causes angular momentum J = ξ1 ∧ ξ̇1 = r2θ̇ to decrease
monotonically in the first quadrant: indeed,

d

dt
J =

d

dt
(ξ1 ∧ ξ̇1) = ξ1 ∧ ξ̈1

(1.2)
= −εxy < 0.

Thus for t > 0 we have J(t) < 0 and hence θ̇ = Jr−2 < 0 for as long as z stays in
the first quadrant. This implies that when z leaves the first quadrant1, it does so
by crossing the positive x–axis, as shown in Figure 2. By an identical argument z
crosses the same semi-axis for some t < 0. Two consecutive crossings of the positive
x–axis correspond to a stutter.

We now outline our approach to the problem without the simplifying assump-
tions. We address at the same time the problem of proving that stutters are preceded
by many revolutions of the primaries, provided that the third body is far away and
slow. As above, let ξ1 be the vector for the bound system: the vector joining 1 and
2, while ξ2 connects the 1 − 2 center of mass to the distant 3rd body.

We will specify a set of initial data for the bodies 1 and 2 which yield bounded
Keplerian ellipses with a fixed upper bound on the major semiaxis for the two-
body problem unperturbed by the third, with the third body starting far away
(|ξ1(0)| = ρ >> 1) and slow (|ξ̇1(0)| < ρ−1). We then show that with such initial
data the two primaries move along slowly changing Keplerian ellipses for many

1and it is easily shown that it does
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Figure 2. The evolution of the short Jacobi vector ξ1 connecting
the two bound masses. Arrows indicate the direction of the “tidal”
torque.

revolutions if ρ is large. We will prove this in the body of the paper by carrying
out the following steps.

i) We consider the perturbed Kepler problem

ξ̈1 = −ξ1/|ξ1|3 + f(ξ1, t), (1.3)

and estimate the slowness of change of the ellipses in terms of the norm of f .
ii) Considering a single body in the force field: ξ̈2 = −ξ2/|ξ1|3 + f2(ξ2, t), with

|f2(ξ2, t)| < const. |ξ2|−1 for large |ξ2|, we show that if the body starts with

|ξ2(0)| ≥ ρ, |ξ̇2(0)| ≤ ρ−1, (1.4)

then

|ξ2(t)| ≥
1

2
ρ, |ξ̇2(t)| ≤ 2ρ−1 (1.5)

for a long time: 0 ≤ t ≤ T (ρ) → ∞ as ρ→ ∞.
iii) We now consider our full problem with initial conditions such that the initial

instantaneous major semiaxis of the two primaries (disregarding body 3) is
≤ rM = O(1) and the third body satisfies (1.4). Our goal is to show that the
two primaries will move in near-Keplerian ellipses with the third body staying
far away for a long time: −τ(ρ) ≤ t ≤ τ(ρ) → ∞ as ρ → ∞. To that
end let τ be the first time that either the major semiaxis of the Kepler ellipse
exceeds 2rM , or body 3 fails (1.4). It is clear from the estimates mentioned
that τ → ∞ as ρ → ∞. Indeed, the semiaxis changes slowly since 1.5 implies
that the Kepler perturbation H in (1.3) satisfies conditions of (i), and thus it
takes a long time before the condition of semiaxis ≤ 2rM to be violated. On
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the other hand, it also takes a long time for (1.5) to become violated, according
to (ii).

2. Motivation. One of the primary motivations behind this article was to better
understand the limits of action minimization for understanding the planar three-
body problem. A host of new solutions to that problem have been constructed using
the method of action minimization, one of the earliest being [5]. But none of these
variational minimizers can have stutters. See the part of the proof of Lemma 7 going
from the bottom of p. 896 to the top of p. 897 of [5]. We recall the construction
there:

Proposition 2.1 (Reflection principle). Suppose that the planar three-body curve
γ : [0, T ] → R2 × R2 × R2 minimizes the action functional subject to the constraint
of fixed end points, or to endpoints lying on fixed rotationally invariant subvariety.
Then γ has no at most one syzygy on the open interval (0, T ), and in particular, γ
will suffer no syzygies on this interval.

Proof. We work on shape space, as in [5]. Let π be the projection from the standard
configuration space to shape space. Suppose there were two (or more) interior
stutters, so that at t = a and t = b the curve suffers syzygies. Suppose also that the
curve is not everywhere collinear, as we do not count collinear intervals – continuous
syzygies – as syzygies. Then π ◦ γ has crossed the collinear plane in shape space
at two points. The curve γ must be a solution to Newton’s equations away from
collisions, and indeed there are no interior collisions by Marchal’s theorem (see the
exposition of [3]) so the curve is a solution to Newton’s equations on (0, T ). It
follows that both crossings of the collinear plane are transversal, since if either were
tangential that initial condition would yield that the entire solution were collinear.
Now the operation of reflecting a curve about the collinear plane in shape space
preserves the action. Reflect the arc π ◦ γ([a, b]), while keeping the rest of the γ
the same. The resulting curve γ̃ still minimizes subject to the same constraint,
and hence solves Newton’s equations. This contradicts the uniqueness of solution
to ODEs, (and also contradicts the fact that solutions must be analytic). Hence γ̃
must not exist, which means there could not have been the two interior syzygies in
the first place.

Remark 2.2. The reader might wonder if these reflection operations can really be
implemented in inertial space. A reflection about any line implements reflection
about the equator in shape space. Then reflect γ([a, b]) about the line defined by
the configuration γ(a). The resulting curve γ̃ will no longer satisfy γ(b) = γ̃(b),
but rather γ̃(b) = Rγ(b) where R is the reflection about the line of γ(a). Reflect
the remaining curve Rγ([b, T ]) about the line Rγ(b) to finish off the curve. The
assumption on the boundary conditions over which γ minimizes guarantees that
this new curve γ̃ continues to satisfy the boundary conditions.

In [13] the reflection principle plus the fact that the Jacobi-Maupertuis metric is
negatively curved yields:

Proposition 2.3. For the equal mass three-body problem with a 1/r2 attractive
potential there are no bounded solutions with stutters.
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3. Set-up. Key equations. Let xi ∈ R2 be the positions of the bodies andmi > 0
their masses. We will express the dynamics in terms of the standard Jacobi vectors
as discussed above:

ξ1 = x1 − x2

and
ξ2 = x3 − (m1x1 +m2x2)/(m1 +m2)

For the lengths of the Jacobi vectors we write

r = |ξ1|, ρ = |ξ2|.
Our solutions will remain in the region

ρ >> r

over the time interval of our analysis. We can write the total angular momentum
J as

J = J1 + J2

where the Ji are the angular momenta for the individual Jacobi vectors: Ji =
αiξi ∧ ξ̇i and

α1 = m1m2/M12 (3.1)

α2 = m3M12/M (3.2)

where M12 = m1 + m2 is the mass of the 12 pair while M = m1 + m2 + m3 is
the total mass. J is conserved. The Ji are not. We can write the total energy as
H = H1 + H2 − g where the Hi are the effective Kepler energies for each Jacobi
vector and g = O(1/ρ3) encodes the interaction between the Jacobi vectors. See
Appendix 1 for explicit formulae. We write θ for the angle between the two Jacobi
vectors and φ for the angle between the long Jacobi vector and a fixed inertial axis.
Then:

J1 = α1r
2(θ̇ + φ̇)

J2 = α2ρ
2φ̇,

We can solve for φ̇ in terms of θ̇ and J :

φ̇ =
1

I

(

J − α1r
2θ̇

)

where
I = α1r

2 + α2ρ
2

is the total moment of inertia. Plugging back in to the J1 equation we find that

J1 = α1r
2

(

1 − α1
r2

I

)

θ̇ + α1
r2

I
J.

In the special case that J = 0 we get a linear, rather than affine, relation between
J1 and θ̇:

J1 = α1r
2

(

1 − α1
r2

I

)

θ̇

= α1r
2

(

1 −O

(

1

ǫ2

))

θ̇

(3.3)

This linear relation between J1 and θ̇, valid only when J = 0, will make our further
analysis simpler and is the main reason we made the hypothesis J = 0 in the
statement of the theorem.
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3.1. Key equation. Our analysis rests on the equation

d

dt
J1 =

r2

ρ3
F cos θ sin θ (3.4)

with

F =
3m1m2m3

m1 +m2
+O

(

r

ρ

)

> 0 (3.5)

This equation is derived in Appendix 1. The equation is illustrated by Figure 2.
The equation is valid regardless of whether or not J = 0. The torque, being the
right hand side of eq. (3.4) is zero if and only if θ = 0, π/2, π, 3π/2. If θ = 0 or π
then the collinear solutions provide examples for which J1 ≡ 0. If θ = π/2 or 3π/2
and m1 = m2 then the isosceles solutions provide examples in which J1 ≡ 0.

4. Proof of the main theorem. We use the notation in and around the statement
of the theorem, as further detailed in the previous section. The angle θ(t) between
ξ1(t) and ξ2(t) is well-defined (modulo 2π) and continuous as long as neither vector
is zero. To insure that neither vector is zero we will prove that

0 < r < ρ (4.1)

over an interval [t∗ − T, t∗ + T ] with T = NPK + O(ǫ) as per the theorem. When
θ = 0 we have an eclipse of type 1 and when θ = π we have an eclipse of type 2.
Over any subinterval on which θ varies monotonically, the eclipses of type 1 and 2
must alternate.

By translating time we may suppose that the time t∗ of the theorem is t∗ = 0. Let
us suppose that θ̇(0) = 0, θ(0) 6= 0, θ(0) 6= π( mod 2π), and that θ̇ < 0 for t < 0 and

θ̇ > 0 for t > 0, and t ∈ [−T, T ]. For the sake of argument, suppose −π < θ(0) < 0.
Then, since θ is monotonically decreasing for t < 0 and monotonically increasing
for t > 0 the syzygies on either side of t = 0 are both of type 1. We have our
stutter! And we have long intervals on either side of t = 0 over which the syzygies
are alternating of type 12.

The argument presented presupposed the existence of syzygies in [−T, 0] and in
[0, T ]. The bulk of the remainder of the paper is used to establish the
existence of these syzygies, roughly 2T/PK of them in each half-interval.
We will show that on any interval not containing zero whose length is approximately
PK that the θ varies by approximately 2π. It follows that ξ1 winds approximately
T/PK times around the origin on either side of t = 0, and in so doing the solution
sweeps out a ‘tight binary’ syzygy sequence 121212.... with roughly N of the 12’s.

We remark that the inequality 4.1 excludes syzygies of type 3 from occurring.
Indeed, if 3 does pass between 1 and 2 on the line joining them, then its distance ρ
to the 12 center of mass is shorter than r, the distance between 1 and 2.

To summarize, a solution will execute a syzygy sequence of the type described in
the theorem over a time interval [−T, T ] with T = NPK +O(ǫ) provided that for t
in this interval we have

• Fact 1. r(t) < ρ(t).
• Fact 2. 0 < r(t)

• Fact 3. θ̇ has a unique transverse zero at a time t = 0
• Fact 4. The angle θ(t) varies by 2π+O(ǫ) over each subinterval [a, b] ⊂ [−T, T ]

of size b− a ∼= PK not containing 0
• Fact 5. θ(0) 6= 0, π
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Figure 3. A syzygy with 3 in the middle requires r > ρ at that moment.

The bulk of the remainder of the paper is devoted to establishing these
facts.

Instead of Fact 1 we will use energy bounds to prove the stronger:
• Fact 1′. r/ρ < 2ǫ. Fact 1′ will be proved as Bound 6 within Appendix 3.
We will see momentarily that Fact 2 follows from Fact 3.
Since J1 = (pos.)θ̇, when the total angular momentum J is zero, Fact 3 is equiv-

alent to the analogous fact concerning J1:
• Fact 3′. J1 has a unique transverse zero at a time 0 in the interval
Fact 4 will follow from the “Kepler approximation” discussed in the next section.
Fact 5 is the assumption cos(θ(t∗)) sin(θ(t∗)) 6= 0 made on the initial data in the

hypothesis of the theorem .
To see that Fact 2 follows from Fact 3′, we recall a well-known fact, reproved

here in Appendix 2, that at binary collision r = 0 and ρ 6= 0, we must have that
J1 = 0. Since J1 6= 0 for t 6= 0 we cannot have r(t) = 0 for t 6= 0 in the interval.
And r(0) 6= 0 by assumption.

It remains to verify Facts 1′, 3′, and 4. The most difficult of these facts to verify
is Fact 3′. For its verifications we need:

4.1. Kepler approximation; Levi-Civita transformation. The short Jacobi
vector ξ1(t) = x1 − x2 satisfies a differential equation of the form

α1ξ̈1 = −β1
ξ1
r3

+ f (4.2)

where α1, β1 are positive constants depending on the masses and where

f = O(1/ρ3)

depends on ξ2 as well as ξ1, and represents the forces of body 3 on 1 and 2. The
derivation of (4.2) and the precise equation is found in Appendix 1. The Kepler
approximation is the act of setting f = 0 above. We say “the Kepler approximation
is valid” over a time interval if the real motion of ξ1 with f present stays close to
the solution of the Kepler approximation equation over that interval. We define
the “instantaneous Kepler orbit” of ξ1 at time t0 to be the solution to the Kepler
approximation with initial conditions ξ1(t0), ξ̇1(t0). Chazy [2], and many others
have established the validity of the approximation under various different regimes.
Due to the singularity at collision r = 0, Chazy explicitly excluded our case in which
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the instantaneous Kepler orbit has zero eccentricity. To allow for our case we need
to regularize binary collision. We will use the Levi-Civita regularization [8], also
called the Bohlin transformation. See Robinson, [16] for a particularly nice version
of this regularization useful for our domain of initial conditions.

The Levi-Civita transformation is:

z2 = ξ1 dτ = dt/|ξ1(t)| (4.3)

a simultaneous transformation of both the dependent (ξ1) and independent (t) vari-
ables. In Appendix 4 we show that under this change of variables eq. (4.2) becomes
a perturbed harmonic oscillator:

z′′ =
H1

2
z − 1

2
zz̄2f. (4.4)

where the ′ denotes differentiation with respect to τ , where

H1 =
α1

2

∣

∣

∣
ξ̇1

∣

∣

∣

2

− β1

r

is the (instantaneous) Kepler energy of ξ1, and where f is the perturbation term in
eq (4.2). Let z0(τ) be the Levi-Civita transform associated to the Kepler approxi-
mation, so that z2

0 = ξ0, dτ = dt/|ξ0(t)|, and ξ0(t) is the instantaneous Kepler orbit
at t = 0. Then the same computation yields an exact harmonic oscillator

z′′0 =
H1(0)

2
z0 (4.5)

Let P be the half-period for z0(τ), which is the Levi-Civita transform of PK (so

PK =
∫ P

0
|z0(τ)|2dτ ; see Appendix 5 .) In Appendix 5 we prove that there exist

constants c and ǫ0 such for ǫ < ǫ0 and all |τ | < NP we have

|z(τ) − z0(τ)| < cǫ (4.6)

4.2. Validity of Fact 3′. We use inequality (4.6) to prove the validity of Fact 3′.
We assume that the term cos(θ0) sin(θ0) appearing in the key eq. (3.4) is positive,
and O(1). We work in the τ variables of the previous section. We will prove that,
provided ǫ is small enough that there is a positive constant δ such that

J1(τ) > (ǫ3δ)τ for τ > 0 while J1(τ) < (ǫ3δ)τ for τ < 0 (4.7)

for τ varying over the image of our interval [−T, T ] , (where T = NP ), under the
Levi-Civita transform t 7→ τ = τ(ξ1(t); t). Inequality 4.7 plus the monotonicity of
the map t 7→ τ clearly implies Fact 3′. If instead we assume that cos(θ0) sin(θ0) < 0
and is O(1), then a nearly identical argument will yield positive δ such that J1(τ) <
−(ǫ3δ)τ for τ > 0 while J1(τ) > −(ǫ3δ)τ for τ < 0.

Since
d

dτ
J1 =

dt

dτ

d

dt
J1 = r

d

dt
J1

we have that

J ′
1(τ) =

r3

ρ3
F sin(θ) cos(θ).

Integrating, and using J1(0) = 0 we have that

J1(τ) =

∫ τ

0

r3

ρ3
F sin(θ) cos(θ)dτ.

(All variables are to be expressed as functions of τ .)
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The argument proceeds, roughly speaking, by arguing that inside the integral
the function F/ρ3 is nearly constant and equal to F0ǫ

3
0, while r3 sin(θ) cos(θ) can be

replaced, with little error, by the corresponding function we would get by using z0(τ)
instead of z(τ), the latter being the Levi-Civita transform of the exact solution. Let
J0

1 (τ) be the result of making these two replacements. To write down J0
1 (τ) more

explicitly recall that ξ = z2 so that r = |z|2 under the Levi-Civita transformation.
Then r3 sin(θ) cos(θ) = rxy where x = r cos(θ), y = r sin θ are the components of ξ.
Writing z = u+ iv. we obtain

r3 sin(θ) cos(θ) = 2(u2 + v2)(u2 − v2)uv := Q(z). (4.8)

Substituting in z = z0(τ) to Q(z), remembering to replace F/ρ3 by F0ǫ
3
0, we obtain

J0
1 (τ) = F0ǫ

3
∫ τ

0 Q(z0(s))ds.
We will show that there are constants δ1 and C, independent of ǫ (depending

only on H1 and the bounds on ρ̇(0)) such that

J0
1 (τ) > ǫ3δ1τ for τ > 0 and J0

1 (τ) < ǫ3δ1τ for τ < 0 (4.9)

while over the intervals [−NP,NP ] we have

|J1(τ)) − J0
1 (τ)| < Cǫ4((τ)2 + τ). (4.10)

The two bounds (4.9) and (4.10) together yield

J1(τ) > ǫ3δ1τ − ǫ4((Cτ2 + Cτ) = ǫ3(δ1 − ǫC − ǫCτ)τ.

By choosing ǫ so small that (δ1 − ǫC − ǫCT ) > 1
2δ1 := δ we guarantee that for

0 < τ < T = NP , J1(τ) > ǫ3δτ which is the desired bound (4.7).

4.3. Proof of the Bound (4.9). The proof of this bound depends only on the
fact that J0

1 (τ) is the indefinite integral of the continuous non-negative periodic
function g(s) = Q(z0(s)) and that g(0) > 0. The periodicity of g follows from that
of the Kepler solution. Its non-negativity is a result of the fact that the angle θ of
a collinear Kepler solution is constant, so that cos(θ) sin(θ) > 0 everywhere along
the solution. The fact that g(0) > 0 is a consequence of the choice of non-collision
initial condition: r(0) > 0. The zeros of g correspond to the collisions.

Lemma 4.1. Let g(s) be a continuous non-negative periodic function of period P .

Suppose that g(0) > 0 and set J(t) =
∫ t

0
g(s)ds ( J plays the role of J0

1 (τ) in the
inequality.) Then there exists a positive constant k such that for all t > 0 we have
J(t) > kt.

Proof. Let c be the average of g over one period. Note that c = J(P )/P . We will
show that k = inf0<s<P (J(s)/s) is positive, and is the constant of the lemma.

Step 1. J(t+ P ) = J(t) + cP
Proof of Step 1: Subtracting the average c from the integrand g(s) to obtain the

continuous periodic function φ(t) =
∫ t

0
(g(s)−c)ds of period P . Since J(t) = ct+φ(t)

and φ is periodic we have J(t+ P ) = c(t+ P ) + φ(t) = cP + J(t).
Step 2. Since g ≥ 0 and g is not identically zero we have c > 0 and J(s) > 0 for

s > 0.
Step 3. By the fundamental theorem of calculus the function J(s)/s has limit

g(0) as s → 0. Thus J(s)/s is a continuous function on [0, P ]. Since g(0) > 0 and
J(s) > 0 on the interval the function J(s)/s is an everywhere positive function on
the interval. By continuity its infimum over the interval, which we called k above,
is realized and is a positive number. We now have J(t) ≥ kt over the interval [0, P ].
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Step 4. Use Steps 1 and 3 and recall that c = g(P )/P so that c ≥ k. We get, for
0 < t < P : J(t + P ) = cP + J(t) ≥ kP + kt = k(P + t). We now have J(t) ≥ kt
for 0 ≤ t ≤ 2P By induction, J(t+ nP ) ≥ k(t+ nP ) for all t, 0 < t < P and for all
positive integers n. Thus J(t) ≥ kt for all positive t.

4.4. Proof of the Bound (4.10).

Proof. Consider the polynomial Q(z) = Q(u, v) occurring in (4.8). Since z0(τ) is
bounded, Q is Lipschitz (being analytic), and |z(τ)− z0(τ)| < Cǫ (inequality (4.6))
for |τ | < T = NP we have that

|Q(z(τ)) −Q(z0(τ))| < Lǫ

for some constant L and for |τ | < T = NP .
It follows that

∣

∣

∣

∣

∫ τ

0

F0

ρ3
0

Q(z(s))ds−
∫ τ

0

F0

ρ3
0

Q(z0(s))ds

∣

∣

∣

∣

< |F0|ǫ3Lǫτ = Cǫ4τ

Next, write

J1(τ) =

∫ τ

0

F (s)

ρ(s)3
Q(z(s))ds

=

∫ τ

0

F0

ρ3
0

Q(z(s))ds+

∫ τ

0

(

F (s)

ρ(s)3
− F0

ρ3
0

)

Q(z(s))ds

(4.11)

so that, for the desired result, it suffices to bound the last integral. We achieve this
through the two bounds:

|F (τ) − F0| ≤ Cǫ (4.12)

valid over the time interval in question, and
∣

∣

∣

∣

1

ρ(s)3
− 1

ρ3
0

∣

∣

∣

∣

< 2Cǫ4s (4.13)

4.5. Proof of Bound (4.12).

Proof. In Appendix 1, eq. (6.10) (see also the equations immediately preceding it,
notably the one involving rργ2 sin(θ)) we find that F = F0 +O(r/ρ). In Appendix
3, Bounds 1 and 6 we show that r and 1/ρ are bound over the interval in question,
so that r/ρ < Cǫ.

4.6. Proof of Bound (4.13).

Proof.
∣

∣

∣

∣

1

ρ(s)3
− 1

ρ3
0

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s

0

d

dt

1

ρ3(t)
dt

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫ s

0

3ν(t)

ρ4(t)
dt

∣

∣

∣

∣

≤ 3ν̄(2ǫ)4|s|
≤ 2Cǫ4|τ |

where in the next-to-last line we used ρ̇ := ν(t) and the speed bound

|ν(t)| ≤ ν̄ (4.14)
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and
1

ρ
< 2ǫ (4.15)

over the interval in question. The bound (4.15) is the point of Bound 6 in Appendix
3. The bound (4.14) is not stated explicitly in the Appendices, but follows directly
from the Sandwich Lemma crucial to Bound 6 in Appendix 4. (The constant C of
2Cτ is then 24ν̄.)

4.7. Finishing the Bound (4.10).

Proof. Writing
F

ρ3
− F0

ρ3
0

= F

(

1

ρ(t)3
− 1

ρ3
0

)

+
F − F0

ρ3
0

we see that
∣

∣

∣

∣

F (s)

ρ(s)3
− F0

ρ0(s)3

∣

∣

∣

∣

< 2Cǫ4|s| + Cǫ4

Integrating as in eq (4.11) and using |Q(z)| < C over the disc within which z(τ) lies,
yields the desired bound on the second integral in eq (4.11), so that when added
to the bound already established on the first integral there, yields the final result,
(4.10).

4.8. Verification of Fact 4. The collinear Kepler approximant ξ0 = z2
0 oscillates

periodically through the origin. At its farthest reach it lies a distance r = rM =
|H1(0)|/β1 = O(1) from the origin. Its oscillation period is

PK =
1

β1
√
α1

(2|H1(0)|)3/2

It follows from these facts, and the validity of the Kepler approximation (Appendix
5) that the radial distance r(t) for the short Kepler vector ξ1 of the true motion
varies between consecutive local maxima at rM + O(ǫ) and that the time between
these maxima is equal to P +O(ǫ). We choose a, b to be the times corresponding to
two such local maxima, and write b−a = T , and note T = P +O(ǫ). We claim that
if the interval [a, b] does not contain zero (0 being the time at which J1 switches
sign) then the curve ξ1(t) must wind nearly one full time around the origin between
these maxima.

Proof. To prove our claim we argue by contradiction. Let ξ1(a) and ξ1(b) be the
points on the curve corresponding to the successive maxima. By the validity of
the Kepler approximation ξ1(a), ξ1(b) are nearly equal, as are their derivatives
v1(a), v1(b). These two facts follow from the fact (Appendix 5) that in the τ param-
eterization, z0 and z are C1-close, where z(τ) is, as above, the Levi-Civita transform
of ξ1(t). (The dτ/dt = 1/r multiplicative factor relating the τ and t velocities at

approximate aphelia t = a, b is O(1), so the velocities v1 = ξ̇1(t) at t = a, b, must be
nearly equal. This near equality need not hold at successive approximate perihelia
– minima for r – since these minima are O(ǫ) so that the multiplicative factor dτ/dt
is O(1/ǫ). ) Since J1 6= 0 in the given interval, there is no collision. (Appendix 2.)
Also θ is monotone over the interval. (Equation (3.3).) It follows that if the curve
does not wind around the origin then it must be contained within the small sector
bounded by the rays from 0 to ξ1(a) and from 0 to ξ1(b) and interior to the circle
r = rM + O(ǫ). See Figure 4. We will show that this contradicts the facts of the
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O

aÓHtL

c
rM2

rM

Ξ1HaL

Ξ1HbL

Figure 4. Convex hull argument for accelerations

acceleration, namely that it points primarily towards the origin. On the one hand:

|v1(b) − v1(a)| = O(ǫ) (4.16)

while on the other hand

|v1(b) − v1(a)| =

∫

~a(s)ds (4.17)

where ~a = dv1/dt = ξ̈1 is the acceleration. From the differential equation ~a(t) =
−cξ1(t)/r(t)3 +O(ǫ) (see (4.2), and Appendix 1 and 3), and the restrictions on ξ1,
we see that the acceleration ~a(t) lies in a region which is an O(ǫ) perturbation of
the region bounded by the negative of our sector, i.e. bounded by the rays from
0 to −ξ1(a) and from 0 to −ξ1(b) and exterior to the circle c/r2M + O(ǫ) = |~a|.
The convex hull of this region is a thin wedge shaped region which is an order ǫ
perturbation of the ‘chopped’ sector which is bounded by the same two rays and
the chord joining where they intersect the circle. Now every point ~a in this convex
region satisfies ~a · ~n < −c1/r2M where ~n is a unit vector pointing in the direction
of ξ1(a) and where c1 = c+ O(ǫ) is a constant. (The constant c = β1/α1 is O(1).)
The average of any parameterized curve lying in a convex region again lies in that
region. It follows that

~n · 1

T

∫ T

0

~a(s)ds < − c

r2M
Then |~n · (v1(b) − v1(a))| > Tc/r2M , contradicting (4.16).

We have now proved the validity of the five facts. As described above, the five
facts together imply the main theorem.

5. Open questions.

i) Do there exist stuttering orbits of the type described in the theorem which
tend towards circularity (eccentricity 0) as we evolve away from the J1 = 0
instant (at which the eccentricity is 1)?

ii) Do there exist periodic stuttering orbits?
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iii) Do there exist periodic non-collision brake orbits?
iv) Given any finite sequence N1, N2, . . . , Nk of large positive integers does there

exist a solution whose syzygy sequence is α1s1α2 . . . sk−1αk where the si are
stutters of length 2: either 11 or 22 and the αi represent ‘tight binary sequences:
..121212.... of length Ni, arranged so that the only stutters are the si? (Thus,
if s1 = 11 then α1 ends in a 2 while α2 begins with a 2.)

v) Is there a quantitative relation between the existence of stutters and conjugacy
points for either the Lagrangian action, or the Jacobi-Maupertuis length?

vi) Can one use the methods of Fejoz [6], [7] or Chenciner-Llibre [4] to establish
existence of stuttering solutions with zero angular momentum?

6. The Appendices. In the first five of the following six appendices we derive
bounds used in the proof of the theorem. The sixth Appendix presents an example
crucial to the formulation of our main theorem.

Appendix 1. Equations of motion in Jacobi variables. The key equation.
Appendix 2. r = 0 =⇒ J1 = 0.
Appendix 3. Bounds on H1, ρ, ρ̇, the time interval, etc.
Appendix 4. The Levi-Civita transformation. A perturbed harmonic oscillator.
Appendix 5: An oscillator Gronwall inequality; validity of the Kepler approxi-

mation. A Gronwall inequality. Validity of the Kepler approximation.
Appendix 6: A perturbed harmonic oscillator which never winds around the

origin.

6.1. Appendix 1: Equations and bounds; the key equation. As in Section
3.1 denote the positions of the masses as x1, x2 and x3. Associated to the partition
12; 3 of the masses we have the Jacobi vectors and their lengths: :

ξ1 = x1 − x2 |ξ1| = r
ξ2 = x3 − x12

cm |ξ2| = ρ

where
x12

cm := (m1x1 +m2x2)/(m1 +m2)
:= µ1x1 + µ2x2

is the 12 center of mass and we have set

µ1 = m1/(m1 +m2) µ2 = m2/(m1 +m2).

We must express the potential in terms of the Jacobi vectors, and so we need
formulae for the mutual distances rij = |xi − xj | in terms of ξ1, ξ2. We have
r12 = r = |ξ1|. To express the other two distances use: x3 − x1 = ξ2 − µ2ξ1 and
x3 − x2 = ξ2 + µ1ξ1 to obtain:

r13 = ‖ξ2 − µ2ξ1‖ r23 = ‖ξ2 + µ1ξ1‖ (6.1)

Note r13, r23 = ρ(1 +O(r/ρ)).

Newton’s equations are αiξ̈i = −∂V /∂ξi for i = 1, 2, where

−V =
m1m2

r12
+
m1m3

r13
+
m2m3

r23

The total energy is H = K/2 + V where K = Σmi|ẋi|2 is twice the kinetic energy.

In Jacobi coordinates, with the center of mass at the origin, we have K = α1|ξ̇1|2 +

α2|ξ̇2|2, where

α1 = β1/(m1 +m2) β1 = m1m2

α2 = β2/(m1 +m2 +m3) β2 = (m1 +m2)m3



584 SAMUEL R. KAPLAN, MARK LEVY AND RICHARD MONTGOMERY

The total energy H can be expressed as the sum of two Kepler energies H1 and H2

and a perturbation term g which goes to zero with r/ρ:

H = H1 +H2 − g (6.2)

with

H1 =
1

2
α1‖ξ̇1‖2 − β1/r (6.3)

H2 =
1

2
α2‖ξ̇2‖2 − β2/ρ (6.4)

The coupling term g is given by

g =
β2

‖ξ2‖
− m1m3

‖ξ2 − µ2ξ1‖
− m2m3

‖ξ2 + µ1ξ1‖
It follows that Newton’s equations can also be written

αiξ̈i = −βiξi
|ξi|3

+ gξi
(6.5)

where the subscript gξi
denotes the gradient of g with respect to ξi. The total

energy is constant along solutions, as is the total angular momentum

J = J1 + J2

with

Ji = αiξi ∧ ξ̇i.
In order to derive the key eq. (3.4) for the evolution of J1 it is useful to write the

equation of ξ̈1 another way:

α1ξ̈1 = γ1ξ1 + γ2ξ2 (6.6)

where the scalar functions γ1, β are given by

γ1 = −m1m2

r3
−m3

{

µ2
2m1

r313
+
µ2

1m2

r323

}

(6.7)

while

γ2 =
m3m1m2

m1 +m2

{

1

r313
− 1

r323

}

(6.8)

Then
d

dt
J1 = ξ1 ∧ (α1ξ̈1)

= γ2ξ1 ∧ ξ2
= rργ2 sin(θ)

where we have used ξ1 ∧ ξ2 = rρ sin(θ).
As r/ρ → 0 the equations (6.5) limit to two decoupled Kepler problems, one

for ξ1, the other for ξ2. We will need some information on the asymptotics of this
decoupling. To get the asymptotics of γ2, g, and the gξi

one can use the Legendre
polynomials Pj . The Pj can be defined in terms of two arbitrary vectors ξ, q in a
Euclidean space. Set ǫ = |q|/|ξ| and ξ · q = |ξ||q| cos(ψ). Then:

1

‖ξ − q‖ =
1

‖ξ‖
{

1 + ǫ cos(ψ) + ǫ2P2(cos(ψ) + . . .+ ǫjPj(cos(ψ) + . . .
}

=
1

‖ξ‖ +
P1(ξ · q)
‖ξ‖3

+
P2(ξ · q)
‖ξ‖5

+ . . .+
Pj(ξ · q)
‖ξ‖2j+1

+ . . .
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We note that P1(x) = x. The first few terms of the Legendre polynomials and some
algebra yields that

rργ2 sin θ =

(

m3m1m2

m1 +m2

)

3r2

ρ3
cos θ sin θ +O

(

r3

ρ4

)

sin(θ) cos(θ)

It follows that
d

dt
J1 =

r2

ρ3
F cos θ sin θ (6.9)

with

F =
3m3m1m2

m1 +m2
+O

(

r

ρ

)

(6.10)

which is the promised key equation (3.4) of Section 2.1.
For later use we record here estimates for g and its two gradients. We compute

g =
m3

ρ

{

(m1µ
2
2 +m2µ

2
1)

(

r

ρ

)2

P2(cosψ) +O

(

r

ρ

3
)

}

=
(m1µ

2
2 +m2µ

2
1)P2(ξ1 · ξ2)

ρ5
+O

(

r3

ρ4

)

so that
|g| ≤ Cr2/ρ3. (6.11)

For the gradients we compute the estimates:

gξ1
= O(r/ρ3) = O(1/ρ3) (6.12)

and
gξ2

= O(r2/ρ4) = O(1/ρ4) (6.13)

Note: In going from O(rm/ρk) to O(1/ρk) we use the fact, valid under the
conditions of theorem 1.1, that r can be uniformly bounded. See eq. (6.17) below.

6.2. Appendix 2: r = 0 =⇒ J1 = 0. We prove that if, in the course of a solution,
we have a binary collision of 1 and 2 (so r = 0), then J1 = 0 at collision.

Indeed, the far energy H2 (see eq. (6.4)), and the perturbation term g are uni-
formly bounded and continuous during the collision. Conservation of the total en-
ergy then implies that H1 is uniformly continuous and bounded in a neighborhood

of the collision time so that r2H1 → 0 at collision. Now H1 = α1

2

(

ṙ2 +
J2

1

r2

)

− β1

r

so that
r2H1 =

α1

2

(

r2ṙ2 + J2
1

)

− β1r

It follows that r2ṙ2 and J2
1 go separately to zero as we approach the time of collision.

6.3. Appendix 3: Energy, distance, and time bounds. The main purpose
of this Appendix is to prove Fact 1′ of Section 4. This fact asserts that there is
a constant c (of O(1) as ǫ → 0) such that for any solution satisfying the initial
condition bounds at t = 0 we have that rM/ρ(t) < 2ǫ is true over the interval
|t| < c/ǫ. (Recall ǫ = rM/ρ(0).) A secondary purpose of this Appendix is to prove
that the bound energy H1 varies by no more than O(ǫ2) over this same interval.

Along the way we prove a number of auxiliary estimates, some needed for Appen-
dix 4 and 5. Most of these other bounds are well-known and we expect that most
if not all can be found in some form in the text of Marchal [10], or in Levi-Civita’s
treatise [8], but have found it easier and more reliable to derive them.
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We divide the bounds into ‘instantaneous bounds’ which are algebraic in nature,
and ‘integral bounds’ which involve an integration.
Instantaneous bounds

• Bound 1. On H1, the bound energy
• Bound 2.On r, the bound distance
• Bound 3. On J1 - the bound angular momenta
• Bound 4. On the far transverse velocity

Integral bounds

• Bound 5. An approximating Kepler equation for ρ
• Bound 6. On ρ; Fact 1′.
• Bound 7. On the variation of H1.

Throughout this Appendix, c, ci, Ci, k and also δ will denote constants that
depend only on the masses and total energy.

6.3.1. Bound 1: On the Energy H1. Take ρ so large that

β1/ρ+ g ≤ c/ρ (6.14)

where c is a prefixed constant. (Any constant larger than β1 will do, the closer
to β1, the larger we will have to take ρ to be.) Since H2 = (pos.) − β2/ρ and
H1 = H −H2 + g = H − (pos.) + β2/ρ+ g we have that

H1 ≤ H + c/ρ (6.15)

Now assume that the total energy H is negative. We obtain

H1 ≤
(

1 − c

ρ|H |

)

H < −c1|H | (6.16)

where for c1 we take any constant less than 1 − (c/ρ|H |). (So c1 can be made
arbitrarily close to 1 by taking ρ large.)

6.3.2. Bound 2: On r, the bound distance. From H1 = (pos.)− β1/r and the previ-
ous bound (6.16) we have that β1/r ≥ c1|H |. It follows that

r ≤ β1/c1|H | := c2 (6.17)

6.3.3. Bound 3: On the separate angular momenta. Multiply H1 through by r and
use H1 < 0 (see equation (6.16) to see that

α1

2
r|ξ̇1|2 ≤ β1.

Multiply this last inequality through by 2α1r, use inequality 6.17 and take a square
root to obtain

α1|ξ1||ξ̇1| ≤ β1

√

2α1/(c1|H |) (6.18)

But J1 = α1ξ1 ∧ ξ̇1 and |ξ1 ∧ ξ̇1| ≤ |ξ1||ξ̇1| so this last equation yields

|J1| ≤ β1

√

2α1/(c1|H |) := c3 (6.19)

To bound J2 use J = J1 + J2 = 0 to obtain the same bound for J2:

|J2| ≤ c3 (6.20)
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6.3.4. Bound 4: On the far transverse velocity. Decompose ξ̇2 into radial and trans-
verse velocities:

ξ̇2 = νξ̂2 + V ⊥
2

where ξ̂2 = ξ2/ρ is the unit vector in the ξ2 direction and where V ⊥
2 is orthogonal

to ξ2. Note that

ν = ρ̇ =
〈

ξ̇2, ξ̂2

〉

Now |ξ2 ∧ ξ̇2| = ρ|V ⊥
2 |, so that inequality (6.20) implies that

|V ⊥
2 | ≤ c4/ρ (6.21)

with c4 = c3/α2.

We now move to the integral bounds.

6.3.5. Bound 5: An approximating Kepler equation for ρ. We have that ρ̇ :=
〈

ξ̂2, ξ̇2

〉

. so that

ρ̈ =

〈

d

dt
ξ̂2, ξ̇2

〉

+
〈

ξ̂2, ξ̈2

〉

. (6.22)

Now
〈

d

dt
ξ̂2, ξ̇2

〉

= − ρ̇
2

ρ
+

‖ξ̇2‖
ρ

=
‖V ⊥‖2

ρ

so that from inequality (6.21) we have
∣

∣

∣

∣

〈

d

dt
ξ̂2, ξ̇2

〉
∣

∣

∣

∣

≤ c24/ρ
3 (6.23)

Now use Newton’s equations for ξ2

α2ξ̈2 = Uξ2
= −β2ξ2/ρ

3 + gξ2
.

which yields

ξ̈2 = −Mξ2/ρ
3 +

1

α2
gξ2

(β2/α2 = M = m1 +m2 +m3). Thus

〈

ξ̂2, ξ̈2

〉

= −M/ρ2 +
1

α2

〈

ξ̂2, gξ2

〉

. (6.24)

Using the estimate (6.13) on the gradient gξ of g, with equations (6.22), (6.23), and
(6.24) we get

|ρ̈+M/ρ2| ≤ c5/ρ
3 (6.25)

So that

− (M + a)/ρ2 < ρ̈ < −(M − a)/ρ2 (6.26)

where a is small constant, and where the inequality is valid as long as c5/ρ < a.
Note a can be made arbitrarily small by taking ρ large.
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x+HtL

x-HtL xHtL

t = 0

Figure 5. Functions in the Sandwich Lemma (6.2)

6.3.6. Bound 6: Bounding ρ; Fact 1′. Here we finally prove the needed Fact 1′.
Let (A,B) be the largest time interval containing t = 0 such that ρ(t) ≥ ρ0/2.

Here we suppose that ρ(0) = ρ0 is so large that the first five bounds all hold, with
ρ = ρ0/2. Then, as long as t lies in (A,B), the previous five bounds all hold. Write
ν0 = ρ̇(0).

Claim 6.1.

|A|, |B| ≥ 1

2

ρ0

|ν0|
+O

(

1

ν3
0ρ0

)

= c6
1

ǫ
+O(ǫ) (6.27)

It follows from the claim that if ν0 = O(1), then ρ(t) ≥ ρ0/2 for all t in an interval
of the form [−c6/ǫ, c6/ǫ], with ǫ = 1/ρ0. In other words, we will have established
the needed Fact 1′.

For the proof we will need a sandwich lemma which the reader can find in [14]
where it was called ‘The comparison lemma’. The lemma sandwiches ρ(t) between
solutions ρ−(t) < ρ+(t) to Kepler’s problems from the previous bound, i.e. the
one-dimensional Kepler equations with Kepler constants M + a and M − a . This
sandwiching holds provided c5/ρ < a, but the sandwich lemma itself will enforce
this inequality over a time domain determined by the solution to Kepler’s equation.

Lemma 6.2. [Sandwich Lemma]. Consider three scalar differential equations ẍ− =
F−(x−), ẍ = F (x, t), ẍ+ = F+(x+) with C1 right hand sides satisfying F−(x) <
F (x, t) < F+(x) < 0 for x > xc, xc a fixed constant. Suppose that F−(x) and F+(x)
are monotone increasing for x > xc Let x−(t), x(t), x+(t) be the solutions to their
respective differential equation which share initial conditions at t = 0: x−(0) =
x1(0) = x+(0) := x∗ > xc, ẋ−(0) = ẋ(0) = ẋ+(0). Then, for all times t such that
x−(t) ≥ xc we have

• (1) x−(t) ≤ x(t) ≤ x+(t) with equality only at t = 0, and
• (2) dx−(t)/dt < dx(t)/dt < dx+(t)/dt for t > 0 and
• (3) dx−(t)/dt > dx(t)/dt > dx+(t)/dt for t < 0

See Figure 5.

The Sandwich Lemma is proved in [14] where it is called a Comparison Lemma.
Applying the lemma with F±(ρ) = −(M ∓ a)/ρ2 yields ρ−(t) < ρ(t) < ρ+(t).
We will only need the lower bound. Referring to our interval (A,B) for ρ, let
(A−(ν0), B−(ν0)) be the analogous interval for the lower bound solution ρ−. By
the comparison lemma we have that (A−(ν0), B−(ν0)) ⊂ (A,B), so that it suffices
to show the validity of the estimate (6.27) with A−(ν0), B−(ν0) in place of A,B.
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It is clear that B−(ν0) is monotone increasing function of ν0: the faster you head
for infinity initially, the longer it takes you to return. This assertion remains true
for negative ν0. Hence, to make B− as small as possible, we should have ν0 < 0 and
large. With this in mind, we now suppose that ν0 < 0, and take it to be large if need
be. Then ρ̈ < 0 over our interval, so that for any time t with O < t < B− we have

−ρ̇(t) > −ν0. From dt = dt
dρdρ it follows that B− =

∫ B
−

0
dt =

∫

1
|ρ̇

−
| |dρ| =

∫

dρ
−ρ̇

−

.

WriteHK = 1
2 ρ̇

2
−−M+a

ρ
−

for the Kepler energy associated to the lower Kepler bound.

Then we have

−ρ̇−(t) =

√

2

(

HK +
M + a

ρ−(t)

)

=

√

ν2
0 − 2

M + a

ρ0
+ 2

M + a

ρ−(t)

= |ν0|
√

1 +
2(M + a)

ν2
0

(

1

ρ−
− 1

ρ0

)

= |ν0|
(

1 +O

(

1

ν2
0ρ

2
0

))

Plugging this estimate for ρ̇ into the integrand of :

B− = −
∫ ρ0/2

ρ0

dρ

−ρ̇
we obtain

B− =
1

2

ρ0

|ν0|
−O

(

1

ν3
0ρ0

)

A time-symmetric argument yields the same bound for |A−|.

6.3.7. Bound 7: On the variation of H1. We claim that for |t| < c6/ǫ we have that

|H1(t) −H1(0)| ≤ c7/ρ
2
0 (6.28)

We have H1 = H −H2 − g. The total energy H is constant. The “perturbation”
g satisfies |g| ≤ c/ρ3

0 over the interval in question so that its variation is at most
2c/ρ3

0. It follows that bound (6.28) is equivalent to

||H2(t) −H2(0)|| ≤ c7/ρ
2
0 (6.29)

Now

H2 =
α2

2

(

ρ̇2 + |V ⊥
2 |2

)

− β2

ρ
and we have seen that

|V ⊥
2 |2 ≤ c4/ρ

2
0

so that, the variation of |V ⊥
2 |2 is also O(1/ρ2

0). Thus to establish (6.29) we must
establish that the variation of the “radial part”

Hρ
2 =

α2

2
ρ̇2 − β2

ρ

of H2 is of order c/ρ2
0. We have:

d

dt
Hρ

2 = ρ̇

(

α2ρ̈+
β2

ρ2

)
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so that, from eq (6.25) we have
∣

∣

∣

∣

d

dt
Hρ

2

∣

∣

∣

∣

≤ |ρ̇| c5/ρ3

Integrating:

|Hρ
2 (t) −Hρ

2 (0)| ≤ c5

∫ ρ(t)

ρ0

|dρ|
ρ3

= c7/ρ
2
0,

where c7 = c4/2, and where in the last equality we used that 1
2ρ(t) ≤ ρ0 ≤ 2ρ(t) for

|t| < c6/ǫ. This last inequality is the desired result.

6.4. Appendix 4: The Levi-Civita transform. In this Appendix we show how
the Levi-Civita transform (4.3) transforms a perturbed Kepler equation into a per-
turbed harmonic oscillator. This fact is well-known and can be found in [17], [8] ,
or [1]. Even so, we present the derivation for completeness, and so as to render the
Levi-Civita transformation and its outcome in the coordinates of this paper.

Consider the perturbed planar Kepler problem:

ξ̈ = −γξ/r3 + f (6.30)

where γ is a constant , r = |ξ| and f is the perturbation, considered to be small,

and allowed to be a function of ξ, ξ̇ and t. The Levi-Civita transform (see (4.3) is
the simultaneous change of dependent (ξ)and independent (t) variables defined by
z2 = ξ and ds = |dt/r|. We show that that the Levi-Civita transform converts our
perturbed Kepler problem into the perturbed oscillator:

z′′ =
1

2
Hz − 1

2
z̄2zf.

Here the prime denotes d/ds and

H1 =
1

2
|ξ̇|2 − γ

|ξ| .

is the unperturbed Kepler energy.
Write ′ for d/ds and ˙ for d/dt. Since d/dt = r−1d/ds we have ξ̇ = r−1ξ′ and

ξ̈ =
d

dt

(

1

r
ξ′

)

(6.31)

=
1

r

d

ds

(

1

r
ξ′

)

(6.32)

=
1

r2
ξ′′ − r′

r3
ξ′ (6.33)

(6.34)

It follows that

r3ξ̈ = rξ′′ − r′ξ′

Thus, upon multiplying both sides of (6.30) by r3 and rearranging we get

rξ′′ − r′ξ′ + γξ = r3f (6.35)

Now, from ξ = z2 we get

ξ′ = 2zz′

while

ξ′′ = 2zz′′ + 2z′2
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Also, from

r = |z|2

we get

r′ = 2 〈z, z′〉
Thus

rξ′′ − r′ξ′ = 2|z|2zz′′ + 2|z|2z′2 − 4 〈z, z′〉 zz′

and (6.35) becomes

2|z|2zz′′ + 2|z|2z′2 − 4 〈z, z′〉 zz′ + γz2 = −|z|6f

We now divide through by 2|z|2z to get

z′′ +
z′2

z
− 2

〈z, z′〉
|z|2 z′ +

γ

2|z|2 z = −|z|4
2z

f

or:

z′′ +

{

z′2

w2
− 2

〈z, z′〉
|z|2

z′

z
+

γ

2|z|2
}

z = −|z|4
2z

f

Now, we claim that

−1

2
H1 =

{

z′2

z2
− 2

〈z, z′〉
|z|2

z′

z
+

γ

2|z|2
}

a fact which, once established will complete the computation, since |z|2 = zz̄, so
that that

|z|4
2z

f =
1

2
z̄2zf.

Now γ/2|ξ| = γ/(2|z|2) is half the potential energy term of H1. Thus, we are done
with our computation, once we have established the rather surprising identity

−1

2
K.E. =

z′2

z2
− 2

〈z, z′〉
|z|2

z′

z

where K.E. = 1
2 |ξ̇|2 = 2|zż|2 is the kinetic energy term of H1. This kinetic energy

identity is achieved after a fair amount of algebra, best done using polar coordinates
z = ρeiθ.

6.5. Appendix 5: An oscillator Gronwall inequality; validity of the Kepler
approximation. We consider a perturbed oscillator z(τ) :

z′′ = −ω2
0z + ǫ2f(z, z′, τ ; ǫ) (6.36)

with ω0 > 0 constant and |f | ≤ Cf for |τ | < Cf/ǫ. We will compare the solutions
z(τ) of this equation to the solutions z0(τ) of the unperturbed oscillator

z′′0 = −ω2
0z0 (6.37)

Lemma 6.3. There exist constants C1, C2 such that solutions to (6.36) and (6.37)
having the same initial conditions at τ = 0 lie within C2ǫ of each other for times
|τ | < C1/ǫ; that is to say, the bound (4.6) holds: |z(τ) − z0(τ)| < C2ǫ. ( The
constants C1, C2 depend only on Cf and on the value of the unperturbed energy
1
2 (|z′|2 + ω2

0 |z|2).)
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Proof. We may suppose that z0(τ), the solution to (6.37), is non-zero, the contrary
case being rather immediately established.

In a neighborhood of the curve z0(t) we can find Hopf-type coordinatesw1, w2, w3, w0 =
θ such that z0(t) is the curve w1 = w2 = w3 = 0 and such that the equations for
the unperturbed oscillator (6.37) become

w′
1 = 0

w′
2 = 0

w′
3 = 0

θ′ = ω0

To see these coordinates explicitly in case ω0 = 1 observe that the Hamiltonian
for the unperturbed oscillator is H0 = 1

2 (|z|2 + |z′|2) so that its level sets are three-

spheres within the C2 coordinatized by (z, z′). The oscillator flow is precisely the
Hopf flow, but relative to the complex structure with coordinates z1 = x+ ix′, z2 =
y+ iy′, where z0 = x+ iy. For w1, w2, w3, we can use the standard Hopf projection
coordinates,w1 = 1

2 (|z1|2−|z2|2), wi + iw2 = z1z̄2. A local trivialization of the Hopf
fibration will yield the fiber coordinate θ.

These coordinates are valid in a (large) neighborhood of an unperturbed orbit
(z0(τ), z

′
0(τ)). In these coordinates the perturbed equations become:

w′
1 = ǫ2f1

w′
2 = ǫ2f2

w′
3 = ǫ2f3

θ′ = ω0 + ǫ2f4

where the coordinate vector field (f1, f2, f3, f4) is the vector field of f written out
in the w-coordinates. Since the Jacobian of the coordinate transformation to the
w’s is bounded in a neighborhood of the unperturbed orbit, there will be another
constant C̃f such that the bound |f | ≤ C̃f holds for the new coordinate vector field
f = (f1, f2, f3, f4). Set w4 = θ and w = (w1, w2, w3, w4). Write w0 for the vector
w(τ) associated to (z0(τ), z

′
0(τ)), and w(τ) for (z(τ), z′(τ)). Then,

w′ − w0′ = ǫ2f.

It follows that

|w′ − w0′| ≤ ǫ2C̃f

Integration, plus w(0) − w0(0) = 0 yields

|w(τ) − w0(τ)| ≤ ǫ2C̃f |τ |

so that

|w(τ) − w0(τ)| ≤ ǫc̃10

provided that |τ | ≤ C̃τ/ǫ, and where the constant c̃10 = C̃f C̃τ . Finally, in a neigh-
borhood of the orbit, the coordinate norms associated with z and w are Lipschitz
equivalent, so we get the desired bound (4.6)
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6.5.1. Proof of the validity of Kepler approximation.

Proof. We continue the notation from immediately above.
Let N be given, as in the theorem. Let P = π/ω0 be the oscillator’s half period.

Here ω0 =
√

|H1(0)|/2 is the instantaneous frequency. Write PK =
∫ P

0 |z0(τ)|2dτ
for the instantaneous Kepler period. (It is not a half period, due to the double cover
feature of the Levi-Civita transformation.) According to the Gronwall lemma above
that there are constants Cf , C1, C2 of order 1 in ǫ such that if both conditions

• (i) |f(t)| < Cf and
• (ii) |τ | < C1/ǫ

hold, then
|z(τ) − z0(τ)| < C2ǫ (6.38)

holds. (The times t and τ are related by the Levi-Civita transform.) From the work
of Appendix 3, there is a c6 such that if |t| < c6/ǫ then |f(t)| ≤ c4. Take C∗ to be
the minimum of the constant C1, C2, c6, c4, Cf .

Claim 6.4. Set ∆ = NP . If

ǫ < min {C∗/∆, C∗/(NPK + C2), 1/∆} (6.39)

then
|z(τ) − z0(τ)| < C2ǫ (6.40)

holds for all |τ | < NP .

This claim will establishes the validity of the Kepler approximation (4.6) as we
need it in Section 4.

6.5.2. Proof of Claim.

Proof. Let τ∗ be the supremum of the numbers such that (6.40) hold for all |τ | < τ∗.
We are to show that τ∗ ≥ ∆ = NP. If τ∗ < ∞, then by continuity we must have
equality |z(τ) − z0(τ)| = C2ǫ at one of the two numbers τ = ±τ∗.

By definition, if |τ | < τ∗ then (6.40) holds, and so:

|t| =

∣

∣

∣

∣

∫ τ

0

r(τ)dτ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ τ

0

|z(τ)|2dτ
∣

∣

∣

∣

<

∣

∣

∣

∣

∫ τ

0

(|z0(τ)|2 + C2ǫ)dτ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ τ

0

(|z0(τ)|2dτ | + ǫC2

∫ τ

0

dτ

∣

∣

∣

∣

≤ nPK + ǫC2|τ |

where the integer n is the first positive integer such that |τ | ≤ nP . In other words,
if τ/P is not integer, then n is 1 plus the integer part of τ/P . In the last line we
used the periodicity of z0(τ) and the relation between P and PK .

Thus if |τ | < ∆ and n ≤ N we have |t| < NPK + ǫC2∆. And since ǫ < 1/∆
we have ǫC2∆ < C2, so that NPK + ǫC2∆ < NPK + C2 < C∗/ǫ < c6/ǫ from our
choice of ǫ. Because |t| < c6/ǫ we have that |f(t)| < Cf .
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We can finish off by contradiction. If τ∗ < ∆ we have just seen that the condition
|f(t)| < Cf holds all the way up to the times t∗ corresponding under Levi-Civita to
±τ∗. But from ǫ < C∗/NP < C1/∆ we have ∆ < C1/ǫ so that τ∗ < C1/ǫ so both
conditions (i) and (ii) above hold, and hence the inequality (6.40) is strict even up
to the Levi-Civita times ±τ∗. This contradicts the definition of τ∗.

6.6. Appendix 6: A perturbed harmonic oscillator with stutters. This
paper began with the question: Do there exist large regions of phase space within
which any solution is stutter-free? Focussing on the region ρ >> r and using the
Levi-Civita transform (Appendix 4) converts this question to the following question.
For a perturbed planar harmonic oscillator is there a (small) neighborhood of the
origin with the property that any solution starting in that neighborhood and not
colliding with the origin must wind around the origin? If the answer had been
‘True’ then our theorem would be false: there would have been no stutters of the
type described in the theorem. That the answer is ‘False’ is shown by the following
example.

Consider the perturbed harmonic oscillator

ẍ = −x

ÿ = −y + ǫf(t)|z|x
where f(t) = 1 for 0 < t < π/2, and f = 0 for π/2 < t < π, and extend f to be 2π
periodic. The significance of π/2 is that it is the oscillator’s quarter period. The
function f can be smoothed off with the same results.

The perturbing vector field ǫf(t)|z|(0, x) is a shear field parallel to the y-axis
and turns on or off with a period 1/4 that of the oscillator’s. This perturbation
‘torques’ the unperturbed solutions counterclockwise, destroying the winding of
solutions which start on the positive y-axis perpendicular to that axis, i.e solutions
with initial conditions z(0) = (0, y0), ż(0) = (δ, 0), δ > 0. The smaller the initial
velocity δ, the closer the solution start to the origin, i.e. the smaller y0 must be to
destroy the winding. A solution which is precariously close to the origin at t = 0
will acquire the “wrong” angular momentum during its time away from the origin
and its winding is destroyed. Instead, it will “snake” its way up the y-axis, never
winding around the origin.

Here is a detailed analytic realization of our example:

ẍ = −x
ÿ = −y + ǫf(t)xa

a ≥ 2 any integer. The function f(t) is as above f : or, more generally, any nonneg-
ative integrable function, f whose support lies in [0, π/2] and which is positive on a
set of positive measure. For example, we could make f a smooth positive version of
a step function by making it 2π periodic, insisting that f ≡ 1 for µ1 ≤ t ≤ π/2−µ2

that f ≡ 0 for t outside of [0.π/2], with f smooth and monotone decreasing. Here
µ1, µ2 < π/2 are positive numbers. Take the same class of initial conditions as
above, with y0, δ > 0.

Solve the x ODE to get: x(t) = δ sin(t). Plug this expression for x into the y
equation to get

ÿ = −y + ǫδf(t) sin(t)a (∗)
which can be solved by the method of variation of parameters.
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