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In the December 2019 issue of SIAM 
News, I offered an explanation of Richard 

Feynman’s observation on the wobble of 
a plate in free flight when launched with 
a spin around its central axis. Feynman 
noted that the plate wobbles twice as fast 
as it spins in the limit of small wobble (he 
actually states that the ratio is the other way 
around [3], but I think it is safe to say that he 
misremembered the result of his derivation). 
I recently came across Andy Ruina’s differ-
ent, direct explanation of the effect; a much 
more extensive discussion and list of refer-
ences to later work is available on his web-
site [5]. His explanation is more general and 
does not rely on axisymmetry, as mine does.

Here I provide yet another explanation of 
the 1:2 ratio, this one based on making the 
gyroscopic effect’s role explicit. Since the 
spinning airborne plate is just a gyroscope, 
the key to the explanation is to first under-
stand precisely how it feels to move a gyro-
scope when holding it by its axle. It will 
then be easy to understand the gyroscope’s 
motion when it is released, with its axis 
changing direction at the moment of release. 
This is precisely what happens to the plate 
when it is launched in the air.

Gyroscope as a Particle on 
the Sphere Subject to Lorentz 
“Magnetic” Force

 Instead of a flying plate, let us consider 
an equivalent object: a spinning wheel 
whose center O  is fixed in space, with a 
massless axle of length R=1  (see Figure 
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The “Lorentz” force F Lv= = const., 
since L = const. and v = const. ; the latter 
holds because the vectors F v^  in Figure 
2. Every trajectory thus has constant geo-
desic curvature k  and is therefore a circle. 
We can find k  from Newton’s second law: 
mkv F2= .  Substituting F Lv=  gives

  	         k L mv= / ,
 
an interesting observation in 
its own right: the geodesic 
curvature of circular orbits of 
the axle’s tip is the ratio of 
the angular momentum to the 
linear momentum.

Let us now find the wobble’s frequency, 
i.e., the angular velocity w  of P  in the 
limit of a tight circle. Treating the small 
spherical cap enclosed by the tight circle 
as planar, the gyroscopic force in Figure 3 
provides the centripetal acceleration w2r :

      w w2r F m Lv m L r m= = =/ / / .

Cancellation yields

           
w w= =L m I

I
/ .axial

diam
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For flat disks, I Iaxial diam/ ,= 2  so that 
w w= 2 axial  (in the limit of small wobble). 
For the other extreme of prolateness, such 
as a pencil spun around its longitudinal 
axis or a rifle bullet, I Iaxial diam/  is small 

and  w w axial .  This is also easily visible 
from the Poinsot description of the motion 
of free rigid bodies. [4].

The Lagrange Top
The Lagrange top, i.e., the axisymmetric 

top, is treated with Euler’s angles in most 
books on classical mechanics, e.g., [1, 4]. 
But the Lagrange top is equivalent to the 
particle in Figure 2 with an additional gravi-
tational force. And this equivalence allows 
for a more intuitive and less cumbersome 
analysis of the problem than the traditional 
one. I may provide this analysis elsewhere.

The figures in this article were provided 
by the author.
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1). The axle’s endpoint P  lies on the unit 
sphere. How does it feel trying to move 
this point? First, there is inertia propor-
tional to the wheel’s moment of inertia 
Idiam  around the diameter. More precisely, 
the inertial mass is

    	 m I R I= =−diam diam
2 .

One could object to equating mass with 
a moment of inertia, but they 
are numerically equal if R  is 
one unit of distance, as speci-
fied above.

Second, if the wheel is also 
spinning around its axis with 
angular velocity waxial ,  then 
point P  will feel a gyroscopic force (see 
Figure 2). This force is normal to the veloc-
ity and of magnitude

	          F Lv= ,  		   (1)

where L I= axial axialw  is the axial angular 
momentum and v  is the speed. It is as if 
P  were a charged particle, with charge L 
moving in the magnetic field perpendicular 
to the sphere of magnitude B=1. 1 At the 
root of this gyroscopic effect is the fact 
that as we reorient OP,  each particle of the 
wheel—while confined to a sphere—is con-
strained to move with a nonzero geodesic 
curvature, thus exerting a centrifugal force 
upon this constraint and producing a torque; 
the hand that moves P  feels the sum of 
all such reaction torques. Computing this 
sum, i.e., integrating over all of the body’s 
particles, results in (1). Incidentally, it is 
immediately clear without any calculation 
that the force and velocity in Figure 2 must 
necessarily be orthogonal to each other; 
otherwise, work would have been done in 
spinning the wheel up or down around its 
axle — an impossibility since the wheel 
bearings are perfect.

1 Actually, B R= −2  happens to be the 
Gaussian curvature of the sphere (I chose 
R=1  only for simplicity). In fact, Gaussian 
curvature plays a key role in the motion of 
spinning tops [2].

Figure 2. Equivalence between a gyroscope 
and a point mass subject to a Lorentz force.

Figure 1. Relating a gyroscope to a point 
mass on the sphere.

Figure 3. Magnified view of small wobble of 
the axle’s tip.
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