Feynman's Flying Saucer: The Second Serving

Tn the December 2019 issue of SIAM 1 News, I offered an explanation of Richard Feynman's observation on the wobble of a plate in free flight when launched with a spin around its central axis. Feynman noted that the plate wobbles twice as fast as it spins in the limit of small wobble (he actually states that the ratio is the other way around [3], but I think it is safe to say that he misremembered the result of his derivation) I recently came across Andy Ruina's differ ent, direct explanation of the effect; a much more extensive discussion and list of references to later work is available on his website [5]. His explanation is more general and does not rely on axisymmetry, as mine does
Here I provide yet another explanation of the $1: 2$ ratio, this one based on making the gyroscopic effect's role explicit. Since the spinning airborne plate is just a gyroscope, the key to the explanation is to first understand precisely how it feels to move a gyro scope when holding it by its axle. It will then be easy to understand the gyroscope motion when it is released, with its axi changing direction at the moment of release This is precisely what happens to the plate when it is launched in the air.

Gyroscope as a Particle on

 the Sphere Subject to Lorentz "Magnetic" ForceInstead of a flying plate, let us consider an equivalent object: a spinning wheel whose center O is fixed in space, with a massless axle of length $R=1$ (see Figure

Figure 1. Relating a gyroscope to a poin mass on the sphere.
1). The axle's endpoint P lies on the unit sphere. How does it feel trying to move this point? First, there is inertia proportional to the wheel's moment of inertia I_{dim} around the diameter. More precisely, he inertial mass is

$$
m=I_{\mathrm{diam}} R^{-2}=I_{\mathrm{diam}} .
$$

One could object to equating mass with a moment of inertia, but they \qquad are numerically equal if R is
one unit of distance, as specified above.

MATHEMATICAL CURIOSITIES
By Mark Levi

Explaining the 1:2 Ratio

 since $L=$ const. and $v=$ const.; the latter holds because the vectors $\mathbf{F} \perp \mathbf{v}$ in Figure 2. Every trajectory thus has constant geodesic curvature k and is therefore a circle. We can find k from Newton's second law: $m k v^{2}=F$. Substituting $F=L v$ gives$$
k=L / m v
$$

The "Lorentz" force $F=L v=$ const.,
an interesting observation in its own right: the geodesic curvature of circular orbits of the axle's tip is the ratio of the angular momentum to the linear momentum.
Let us now find the wobble's frequency, i.e., the angular velocity ω of P in the limit of a tight circle. Treating the small spherical cap enclosed by the tight circle as planar, the gyroscopic force in Figure 3 provides the centripetal acceleration $\omega^{2} r$:
$\omega^{2} r=F / m=L v / m=L \omega r / m$.

Figure 2. Equivalence between a gyroscope and a point mass subject to a Lorentz force.

Cancellation yields

$$
\omega=L / m=\frac{I_{\text {axial }}}{I_{\text {diam }}} \omega_{\text {axial }}
$$

For flat disks, $I_{\text {axial }} / I_{\text {diam }}=2$, so that $\omega=2 \omega_{\text {axial }}$ (in the limit of small wobble). For the other extreme of prolateness, such as a pencil spun around its longitudinal axis or a rifle bullet, $I_{\text {axial }} / I_{\text {diam }}$ is small

Figure 3. Magnified view of small wobble of the axle's tip.
and $\omega \ll \omega_{\text {axial }}$. This is also easily visible from the Poinsot description of the motion of free rigid bodies. [4].

The Lagrange Top

The Lagrange top, i.e., the axisymmetric top, is treated with Euler's angles in most books on classical mechanics, e.g., [1, 4]. But the Lagrange top is equivalent to the particle in Figure 2 with an additional gravitational force. And this equivalence allows for a more intuitive and less cumbersome analysis of the problem than the traditional one. I may provide this analysis elsewhere.

The figures in this article were provided by the author.

References

[1] Arnold, V.I. (1989). Mathematical Methods of Classical Mechanics. New York, NY: Springer-Verlag.
[2] Cox, G., \& Levi, M. (2018). Gaussian curvature and gyroscopes. Comm. Pure Appl. Math., 71(5), 938-952.
[3] Feynman, R. (1997). Surely You're Joking, Mr. Feynman! New York, NY: W.W. Norton \& Company.
[4] Goldstein, H. (1980). Classical Mechanics. Reading, MA: Addison Wesley
[5] Ruina, A. (2007). Rolling and Slidin. of Spinning Things. Retrieved from http:// ruina.tam.cornell.edu/research/topics/miscellaneous/rolling_and_sliding.html

Mark Levi (levi@math.psu.edu) is a pro fessor of mathematics at the Pennsylvania State University.

