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A Lagrangian Proof of the Invariant Curve Theorem for
Twist Mappings
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1. Background on generating functions

This proof is contained in unpublished lecture notes of a course held by J. Moser
at the ETH-Ziirich in June 1986.

In contrast to the original “Hamiltonian” approach, where the invariant curve
is sought in the phase space, the present Lagrangian approach is based on reducing
the problem of finding an invariant curve to solving a nonlinear second difference
equation in the configuration space. This approach is modeled after the proof of an
analogue theorem for elliptic partial differential equations [9] where it was needed
since the transformation technique fails for partial differential equations. In our
situation the invariance of the desired curve under a mapping leads to a nonlinear
second order difference equation which will be derived in the next section and will
be solved in the subsequent sections.

Let us consider an area—preserving twist mapping ¢ : R? — R? of the covering
plane of the cylinder R(mod 1) x R. Assume that ¢ : (z1,91) — (@2,72) has a
generating function h:

1) hi(z1,22) = —,
ho(x1,T2) = Y2-
Here hi, he are the derivatives with respect to the first or second argument of

h. Similarly we will denote the second derivatives by hi1, k12, hoa. The following
theorem establishes a sufficient condition under which a mapping is given by (1).

THEOREM 1. Any smooth twist cylinder map ¢ satisfying the monotone twist
condition 8z2/8y, > 0 possesses a generating function h such that the map is
given by (1) implicitly. Moreover, the map is exact: f‘m ydr = fv ydx, where v is
an arbitrary smooth noncontractible circle on the cylinder, iff Mz + 1,22+ 1) =
h(z1,z2) end hi2 <O0.

2. Reduction to a difference equation

The existence of an invariant curve is equivalent to a second order differential
equation; this is the main point of this section.
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734 M. LEVI AND J. MOSER

Consider a closed curve wrapping around the cylinder, with parametric equa-
tions x = u(f), y = v() in the covering (z,y)-plane of the cylinder, with u(§) — 6
and v(#) periodic of period 1, Figure 1.

y

(x,y)=(u(6), v(8))

F1GURE 1. The invariant curve

We will find an invariant curve which satisfies the invariance condition
(2) p(w(d)) = w(b +w),

with a prescribed rotation number w. Moreover, u is assumed to be strictly mono-
tone in 6. According to (2) the restriction of ¢ to the curve is conjugate to a
rotation by w.

The following is a Lagrangian formulation of the invariance condition (2), as it
occurs in Mather’s theory.

THEOREM 2. The curve w(f) = (u(6),v(0)) satisfies the invariance condition
(2) with @ given by (1) iff the horizontal function u(B) satisfies the second order
difference equation

(3) E(u(8)) = h1(u(8),u(8 +w)) + ho(u(f — w),u(6)) = 0.

To prove the theorem we simply shift # by —w in the second equation in (1)
and add the two equations in (1).

The Hamiltonian problem of finding w(6) has thus been reduced to the La-
grangian equation for a single function u(6). If u(6) has been so determined one
finds v = v(f) from the formula v = —h; (u,ut); here and in the following we use
the abbreviation u* = w(f + w), u™ = w(d - w).

REMARK 3. The equation (3) is the Euler-Lagrange variational equation for
the variational problem § fol h(u,u*)df = 0 (Percival’s variational principle).

REMARK 4. The mean value of ugE(u) is zero:

(4) / ' o B(w)df = 0
0
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as follows from the invariance of the Lagrangian fol h(u,u*)df under f-translations
u(0) — u(f + ¢) or from the identity

ugE(u) (u,ut) — V(ugha(u™,u))

0
= —h
00
where Vf = f(6 + w) — f(6). Integration gives the claim.
ExaMPLE 5. Consider the standard map
zy =21 +y + 5 (21)
Y2 = v+ S'(z1)
the generating function is
1
h(@1,22) = 5(21 - 2)° + S(z1)
with a periodic function S of period 1 the equation (3) takes the form

w(f + w) — 2u(B) + u(d — w) = S'(u(9)).

3. Main theorem

The invariant curve theorem stated here is in effect an implicit function theorem
stating that in the vicinity of a near-solution: E(ug) ~ O there exists an exact
solution: E(u) = 0 provided, in particular, that w is Diophantine.

Notations. Let W, be the set of 1-periodic real analytic functions of 6 bounded
on the strip |Imé| < r. Introduce the maximum norm

|flr = sUP|1mej<- | F(O)]-

Assumptions. We assume that h is analytic for (z1,22) € D C C? real for
(x1,z2) and invariant under translations mentioned in Theorem 1. For R > 0, let
Dr C D denote the largest set whose R-neighborhood lies in D, Figure 2.

X,

1

/ x

Domain of h in C*

Domain of h in DAR?

FIGURE 2. Schematic image of the domain of h
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Thus the points in Dg are “safely” inside D(h). We assume that

(5) minplhig| > Kk, &> 0,

and that there exists M > 0 such that

(6) |hlce () < M.

Let ug(0) — 6 € W, for some 0 < r < 1. Assume, moreover, that
(7) (ug,ug) € Dg for |Imé| < r,

so that (ug,uf) is “safely” inside the domain of h, Figure 2, and that for some
Np > 0 (possibly large)

(8) (uo)elr < No, [(u0)y*Ir < No.

THEOREM 6 (Main theorem). Assume that w is Diophantine: there exist K > 0
and o > 0 such that

_P
(9) Jw qIZ

e V integer p,q # 0.

Assume that h and ug satisfy the above conditions. There exists 6 = 8(r,h, M, Ny,
K,0,k) such that if |E(ug)|r < 8, then there exists a unique solution u near ug of
E(u) = 0 with u(6) — 8 € W, 5 and mean value of u(6) — 0 equal to zero.

Application to the near-integrable twist map. Consider a small perturbation of
the linear twist map:
T2 =1 + 41 +ef(z1,91,€)
Y2 = y1 +€9(z1,y1,€),
assumed to be area-preserving and exact. The map is given by a generating function
h(z1,%2) = 4(x2 — 21)? + eH (21, T2,€) which we assume to be defined on D =
{(z1,22) : a < Re(zp —z1) < b, [Im 1| < 1, |Im x2| < 1}. To apply the main
theorem, choose a Diophantine a < w < b and take ug(#) = . It is a simple exercise
to verify the conditions (5)-(8), along with |E(ug)|, = O(¢). Theorem 6 yields an
invariant curve in the annulus a < y < b provided ¢ is small enough.

(10)

REMARK 7. It is important to observe that the smallness assumption |E(ug)|r <
§ in the main theorem is more general than the standard near-integrability assump-
tion requiring the map to be of the form (10).
4. The homological equation

We will solve the problem E(u) = 0 by a modification of Newton’s iteration,
starting with up. Seeking an improvement % = u + v of u, we write

E(u+v)=E()+ E(uv+Q,

where @) is the remainder and where

(11) E'(u)v = (hy1 + h3y)v + haovt + hv™.
The first idea would be to kill linear terms:
(12) E'(u)v = —E(u),

in order to make F(u-+v) quadratically small compared with E(u). This is the basis
of the standard Newton iteration. The equation (12) is, however, difficult to solve.
Fortunately, it is not necessary to kill linear terms: making them quadratically small
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would suffice. To determine precisely how to modify the equation (12), we multiply
both sides by ug and subtract the quadratically small term U%E(u) = vE'(u)ug
from the left—hand side. The result is the homological equation, no longer equivalent
to (12):

(13) ugE' (u)v — vE'(u)ug = —ug E(u).

When v is determined from this equation, E(u+v) turns out to be still quadratically
small compared to E(u) as we shall see later, but first we show how to solve (13).
Note that

weE' (w)v — vE' (u)ug = hia(ugvt — ugv) + hiy(ugv™ — ug v);
introducing now the new unknown w = - we rewrite the above as
hlgueu;'(w+ —w) — hugug(w —w™) = V*(hlguoung)

where
VF0) = f(6+w) - f(8), V*f(8)=f(6)— f(f—w)

To summarize, we have transformed (13) into
(14) V* (hi1augug Vw) = —ug E(u).

The Newton step. is thus defined as follows. Given u, find w from the homo-
logical equation (14) and set the updated

(15) @=u-+v, V="UugWw.

In the sections below we will show that with appropriate choices of spaces and
constants the repeated iterations of this step converge to the solution of our problem
E(u)=0.

An outline of the proof of the main theorem. We will show that one step (15)
produces a new error that is quadratic in the preceding one, as one would expect
from a Newton-type step: |E(@)|, ~ |E(u)|2/(r — p)*". This is done in section 6.
The improvement, however, is counteracted by the small denominator, due to small
divisors. In section 7 we show that the step can be iterated infinitely many times
and that convergence wins if appropriate choices are made. In the next section 5
we study the homological equation.

A heuristic motivation. The above trick of writing the correction term in the
form ugw is essential for this approach. It can be motivated by noticing that, in
the case that u is already a solution of E(u) = 0, the operator E'(u) has as zero
solutions the multiples of ug. Thus by setting v = ugw the corresponding operator
has the constants as zero solutions (“variation of constants”). Moreover, since
the operator E' is symmetric also upE’(u)ug is symmetric, so that also its adjoint
has the constants in its zero space, as is borne out by the formula ugE' (w)ugw =
(V*aV)w (with a = hi2uguy ). Therefore the range of this operator contains only
functions of mean value zero and Equation (4) appears as a necessary compatibility
condition for the solvability of equation (14).

5. Solving the homological equation

The following lemma gives an estimate on the solution of (14). We treat u as
given and w as the unknown.
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LEMMA 8. Assume that u(8) satisfies

(16) (u,ut) € Dp for |Imb| <,
and
(17) [ual- < N, |ugls <N for |Im 6] <r.

Then (14) has a unique solution w € W, with wo = fol wdf =0 foranyO<p<r,
and the correction v = ugw satisfies the estimates

c c
(18) vl < mz‘;lE(uﬂn lvel, < WiE(U)h,
where c = ¢(M,N,K,0) and T =2+ 0.
We will prove this lemma by a two-fold application of the simpler lemma:

LEMMA 9 (Decrease of domain of analyticity). Let w satisfy the Diophantine
condition (9), and let g € W, with mean value lg] = 0. The equation

(19) Vi =g,
has a unique solution v € W, with )] = 0 for any 0 < v’ < r. Moreover,

9|~
(20) [Pl < (K, U)W-
PROOF OF LEMMA 9. The Fourier coefficients of g and 1 are related via
g
(21) ¢n=ﬁmf—_~17§0a Yo = 0.
The Diophantine condition (9) gives the lower bound on the denominators:
2minw c(K)
(22) Ie"” _1|>W’

while g € W, implies

(23) lgn] < |glre=2mimir.

Using (23) and (22) in (21) we obtain, for 0 < v’ < s < r:

(24) [l < lglre™ (K)e ™M n|*+7 = |g] ¢} (K)e2msInle=2n(r=s)lnl|pj1+o

We estimate the right hand side by using the estimate ze=% < e~! for positive
z, which for z = 2™ gives the inequality e~"|n|b < e b(b/a)® for all n; with

a=2n(r—s)and b=1+ o we obtain the result

1
—|n|2ns
w)nl < CI(K7U)lg|r(r_s)1+o.e .

From this estimate on ,, we obtain

, 2¢1|glr —2n(s—r")\ 1 2c1lg|-
, < |n|2mr < 1 _ p—2n(s—7r") <
11/)|T = Z |'¢n|e = ('I‘ _ s)1+g (1 € ) — (.,. — S)H'U(S —_ 7-/)

r+7r’

which for s = 74 gives ! the desired estimate (20) for +. This completes the proof
of Lemma 9. O

Hn the last step we used the inequality (1 — e=279)"1 < ¢~1, 0< g < %
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PROOF OF LEMMA 8. Introducing the abbreviations (higuguy)~! = p and
—ugE(u) = g, we rewrite (14) as a system, where u is a constant to be chosen:

V=g
(25) { PV =+

By Lemma 9 (recall that the mean value [g] = 0 by (4)) we get a unique ¥ with
zero mean and satisfying (20):

oK,0)
T (=)
for any 0 < 7 < r. We now determine w from the second equation in (25):

Vw = p(¢ + p). Since the left-hand side has mean value zero, we must require the
same of the right—hand side:

(26) Yl < ——7 gl

J ppdé
Jpdd -

From the above estimates on hiz and on ug we obtain |u| < kKMN* —ﬁj—',)—,. We
conclude that there exists a unique solution w satisfying

e~ e
DGR

here (26) and (27) were used in the second inequality. Setting 7' = (r + p)/2 we
obtain, recalling that |ug] < N:

(27) p=-

lwlp £

[
(28) lwl|, < ﬁw(u)p, c3 = c3(M,N, K, k,0).

Using |ug| < N again we get the first estimate of (18). Using the Cauchy estimate
luglp < —”JL (with appropriate s) one obtains also the second inequality (18). This

s—
completes the proof of Lemma 8 and the analysis of the homological equation. O
6. Quadratic dependence of the error

The updated @& = u 4 v (v = ugw) obtained by Newton’s iteration is expected,
according to our discussion of section 2, to give a quadratic improvement of the
error. The following lemma makes this precise:

LEMMA 10. Let u satisfy the assumptions of Lemma 3 and, moreover, let & =
u+ v satisfy (@, a") € Dg for |Im 6] < p, for some 0 < p <r. Then

(29) |E(@)], < (—-—_‘;—)

|E(u)l?,
where cg = cg(M, N, K, k,0).
PrOOF. With u as specified, we estimate the error
|E(@)|, = |E(u+ )|, = |E(w) + E'(w)v +Ql,
with Q denoting the remainder. From (13) we obtain

ugE(u) + ugE’'(u)v = vE'(u)ug,
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or E(u) + E'(u)v = wE'(u)usg = wE(u). Using (28) for w, together with the
Cauchy estimate | E(u)|, < IET(fZ, 1E@l:  we obtain

’ E(u 3 E(u 3
(30) ) + B (u)ul, < 4 (T'_ (p)l'm < (lr 4 p>)l47,

where ¢y = ¢y(M, N, K, k, ). Moreover, the error @ is quadratically small in terms
of |[E(u)l,. Indeed, by Taylor’s formula we have for some 0 <t < 1:

1d?
From (3) we have
(31) 1Ql, < esvl,
where ¢5 depends only on |h|gs. From this, from (18) and from (30) we obtain the
desired estimate (29). O

7. The limiting process

In this section we specify the details of iteration of the Newton step (15) and
show that it converges to the solution of E(u) = 0.

We choose the sequence r = rg > r1 > ..., with r, — 1o > 0, according
to Th = Too + 2‘"(7"0 - roo), and construct a sequence ug, Uy, ..., Un,... Vid Uy =
Up—1+(Un—1)eWn—1, where w,_1 € W, is the solution of the homological equation
(14) with u = up_1.

We show first that the solution of E(u) = 0 exists (provided § is small enough)
by repeated application of Lemmas 8 and 10; their applicability will be justified
below.

Applying (18) of Lemma 8 to u = uy, 7 = r,, N = 2Ny, we obtain the estimates
for corrections v, = up41 — Up:

1

32 <
( ) 'vnlrn+1 - (Tn _"'n+1)2T

where €, = |E(uy)|r,, and where ¢; = ¢(M, 2Ny, K, o) is the constant from Lemma 8,
and

C1
33 n)Blrnps & T3 7¢n
( ) '(’U )9| n4l = (Tn —Tn+1)2T+16

€n,

By Lemma 10, see (29), ¢, satisfy

2
£

where a = 247 and c7 = cs(r_;:)‘,—,. Thus the geometric growth a™ competes with

quadratlc decay €2; with eg = & chosen sufficiently small - it is here that the choice
of § in Theorem 6 comes in — the quadratic decay wins: €, — 0. Indeed, rescaling
the sequence by introducing

(35) M = a"*leren
we obtain 7,41 < n2. Therefore, if g = acreg < 1 we have 7, < 77(2," — 0 and
en — 0. By (32) we then have |v,|,., — 0 faster than exponentially, so that

Uoo = liMp_yoo Un = Uy + Zg—l vk is well defined in |Im 6| < ro,. We conclude:
E(ue) = limy oo F(un) = 0.
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We prove now that the assumptions (16) and (17) of Lemmas 8 and 10 hold
with © = un, N = 2Ny, 7 = r,, at nth step for all n > 1. It suffices to show that
foralln>1

R

(36) |Un - U()lrn < '2—

and

(37) (um — o)l <
n 0/0ir, 2N0’

for all n = 1,2,.... Indeed, one verifies that (36) together with (7) implies (16)
with u = u,, T = 7, while (37) with (8) imply (17) with v = un, N = 2No and
r = r,,. Thus the constant c; in (32) and (33) is given by ¢; = c(M, 2Ny, K, K, 0),
where ¢ is from Lemma 8. Similarly, cg = cs(M, 2Ny, K, %,0). It remains thus to
prove (36) and (37).

For this purpose we first verify, for A < 47, hence 2* < @, the estimate

o0
En 2770 2(160
38 —_— < -7 = ,
( ) 20: (Tn - Tn+1))‘ - 7 "o oo Znn - 7‘0 - Too)'\ (7'0 - 'roo))\
for g < 1/2, where we used 7, < ngH This sum can be made small by choice of

&g = é.

To prove (36) and (37) we assume that n > 1 is the smallest integer for which
at least one these inequalities is violated. Then, for v < n these inequalities hold
and we can use the estimate (32), and with (38) we get

Z_ Z _ ag, €o
| - uOlT'n < |'Ul/|'r,, = Y < Clza—-—v.
U—

=0 —Tyt1)? (ro — Too

Similarly, we find from (33)
€0
(7'0 _ 7,.00)27‘+1 ’
By further decreasing & = o, if necessary, we assure that {36) and (37) hold for all
n. This completes the proof of the Main Theorem.

|(un — uo)glr, < c12a

REMARK 11. We have proven along the way that if J(—f_j(_—';")él,l < ¢ (with a &'

independent of r, p) then there exists a solution u € W, of E(u) = 0 satisfying the
estimates

I ( 0)|r
(r—p)*"

8. Appendix

|E(uo)lr

|U uOlp < C]_2a '(—'p)2—7_+—1

=, |(u — uo)sl, < c12a

A. Small Twist.

1) Statement of the result. For several applications it is important to treat the
case where the “twist” g—;f in formula (10) is small. This degenerate case gives
difficulties in the representation of the mapping by a generating function, since this
requires solving the equation zo = f(z1,¥:) for y1. On the other hand this situation
is unavoidable as it arises, for example, in the stability problem of an elliptic fixed
point of an area-preserving mapping. We will show how these difficulties can be
overcome, essentially by proper rescaling and introducing a more suitable generating
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function. In the subsequent section we will apply the resulting theorem to the above
mentioned stability problem.

We assume that the area-preserving real analytic map ¢ depends on a param-
eter v € (0,1) and has the form

T2 = z1 +a(y) + vy + f(T1,91,7)

(39)
y2 = y1 + g(x1,y1,7)

where the functions on the right hand side are analytic in the complex disc |y1{ < 1
and in [Im x,] < 7. We denote W, 5 the space of real-analytic functions, bounded
analytic in |y;1| < s, |[Im 1| < r of period 1 in z;, with the norm |f|, s = sup|f]
over this domain.

THEOREM 12. There exists a positive constant §, independent of y € (0,1) such
that if

Iflr,l + lglr,l <76

then there exists an invariant curve z1 = u(f),y1 = v(0) in —1 < v(0) < 1 with
both u(6) — 8 = 4(6) and v(0) of period 1, real analytic and with ug > 0.

This theorem differs from the previous one as the rotation number w is not
prescribed but has to be constructed in an interval of length v. We need not
impose any smoothness conditions on a(y). As the rule this theorem is used in
the following way: If |f|,.1 + |g|r1 = o(7) then there exists an invariant curve
for sufficiently small . (Here we use the Landau notation: f = o(y*) means
|flv™* — 0 for v — 0, while f = O(+*) means |f]y*is bounded).

2) Generating function. To construct a generating function for this mapping we
do not use z;, 2 as independent variables but rather x; and the rescaled variable
p=7"Yz2 — z1 — a(v)) so that

p=y1 +v  f(z1,91,7)-

Since y~1f = O(6) is assumed to be small we can solve this equation for y; =
F(z1,p,7) = p + O(6) and, inserting this into the second equation of (39), we
obtain yp = G(x1,p,v) = p+ O(8). These functions can be defined for |p| < 3, for
any 0 <9 <1, e.g. for ¢ = 2 if § is sufficiently small.

Now we use that yodrye — y1dx, is exact, hence also

v N yedza — y1dz1) = 7N y2 — y1)dz1 + yodp = dl(z1,p,7)

which defines the generating function I = I{z;, p,v) up to a constant. Thus we have
v2-% =G~ F =l;,,y2 = G = I, so that I(z;,p) = 3p® + O(8), where the
estimate is understood as being uniform in ~.

If we compare this generating function I(z,p) (we suppress the v ) with h =
h(z1,z2) we find the relation l(x1,p) = v~ *h{x1, 71 +a+7p). Note that the domain
of definition of & depends on v while that of [ is fixed, say |p| < 9.

The function {(x,p) can be viewed as the discrete analogue of the Lagrange
function L(z, ) in mechanics.

3) The difference equation. We express the condition that z; = u(f) = 6 +
©(8), y1 = v(0) represents an invariant curve with rotation number w -which is yet
to be determined: Notice that the invariance requires that zo = u(6 + w), hence

p=y"tut—u—-a)=Vi+a
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where we defined the rescaled V and a by Vf =y~ 1(f(6+w)—f(8)), a = v Hw-
a). Similarly we define the rescaled functional E@) (=" (hi(u,u™) + ha(u™ 1))
by

Ew) =7y = ;) = loy = V*lp(z1, Vi + ) = Iz, (21, Vi + ).

One recognizes the equation E(u) = 0 as the analogue of the Euler equation in
mechanics.

4) Determination of w. To find a solution of E(u) = 0 we have to determine w
so that o lies in the domain of definition of I. It suffices that

1 1
lw — a] < /2 so that —§<a<3.

<

If we want to find a number w in this interval satisfying a Diophantine condition
we have to replace the factor K in (9) by vK and require that

(40) |w — §| > vKq o2,

One can show by a simple measure theoretical argument that for v > 0 there exists
a number w = w(v) satisfying these two requirements (see Siegel-Moser [15)).
Having fixed w we have with ug = 8 that E(ug) = V*(a) + 0(8) = 0(6).
Now we may proceed like in the proof of the main theorem:

THEOREM 13. With w chosen as above there exists a &' > 0 depending on
r.o, K but not on vy such that if |E(uo)|, < &' there ezists a unique solution u(f) of
E(u) = 0 with 4(0) = w() — 6 € W, /2 and with mean value zero.

5) Proof. The proof proceeds as before; we just have to verify that the estimates
of lemma 9 still hold, uniformly in +, if we use the rescaled V and the modified Dio-
phantine condition (40). Indeed the small divisors can be estimated independently
of , as follows. If m is chosen as an integer satisfying |nw — m| < 3 we have

Nt ™ — 1| = y72sinw|nw — m| > " Y|nw —m| > 4Kn"7 7

The rest of the proof is straightforward.

B. Stability of elliptic fixed points. An area-preserving real-analytic map-
ping ¢ can, in the neighborhood of a fixed point, which we take to be the origin,
be written in the form ¢ : (u,v) — (ucosa —vsina,usina+vcosa)+ O(u? +v?%),
or in complex notation with w = u + v

w — we'® + O(|w|?)

If g /27 is not an integer for g = 1,2, ..., k then one can find symplectic coordinates
such that the mapping is in Birkhoff normal form up to order k—1,1e.

(41) w — we¥ + 0(|w|k)

where 1 is real polynomial of degree < 5 — 1 in |w|2. Its coefficients are invariant
under symplectic transformations; they are the so-called Birkhoff invariants.

THEOREM 14. If in (41) ¢ is not a constant then the origin is a stable fized
point under .
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PROOF. We may assume that ) = o+ B|w|?*™ where 3 # 0and 2 < 2m < k—1.
Truncating at the order 2m + 2 we may assume that the mapping has the form

w— we™ + O(|w|*™+?), y =a + Blwf*™.

Since for ¢! the coefficient 3 is replaced by —f we may also assume 3 > 0. The
stability will be established by exhibiting invariant curves surrounding the origin in
any of its neighborhoods. More specifically we will construct such invariant curves
in any annulus

1
El-e) <|w?<e(1+e¥), v= 3

for sufficiently small € > 0. Notice that this annulus is rather narrow since its width
is of the order e'*¥ = £4/3 which is small compared to the radius €.

The existence of the invariant curves will be deduced from the theorem of the
previous section, by using suitable “polar coordinates” z,y which are defined by

w=e\/1+evy e?®
so that the above annulus is given by ~1 < y < 1. One verifies that the Jacobian of
this coordinate change is a constant, namely —me2t”. Therefore the transformed
mapping (z1,y1) — (Z2,y2) will preserve the area element dz A dy and, in fact be
exact symplectic.

To express the mapping in these coordinates we observe that for the image
point wy = p(w) we have |waf* = |w[? + O(|w|?™*+3) hence e2(1 + e*y,) = £2(1 +
€'y1) + O(e*™+3) or yp = y; + O(>™+1-¥), Similarly we find z5 = 7, + (a+
Be¥™ (14 ey1)™) + O(*™+1) or, expanding the m** power, we have

T2 =21+ a+ 7y + O(E™™), yy =y + O(e™+17V)

where a = %(a + Be?™),y = _7227g€2m+u > 0. Notice that the two error terms have
the same order by our choice of v.

This mapping has the form required for the theorem of the previous section, and
since e2m+2 = g2mHl=v — ((41t1) with p = &gt > 0 the error term is indeed
small compared to y. Moreover, the mapping is real analytic in ly1] < 1,1 Im 1] <
r. Thus, for sufficiently small €, every such annulus contains an invariant curve,
proving our claim. O

C. Comments on the literature. The original invariant curve theorem [8]
was proven under different assumptions: The mapping there was neither real an-
alytic nor exact symplectic but only a sufficiently smooth mapping satisfying a
certain curve intersection property (which entered also in G. D. Birkhoff’s proof
of his extension of the “last geometric theorem of Poincaré” [1]. In this sense the
present statement is more restrictive but still sufficient for many applications. It
should be pointed out that our proof can be extended to cover the case of smooth
area-preserving mappings, by employing the approximation technique described in
[11], [14]. The case of real analytic mappings satisfying the curve intersection
property has been treated in [15], but using transformation theory.

As mentioned in the introduction the present proof originated in the study of
analogue theorems for partial differential equations, where a transformation theory
is not available. This was carried out in [9], where also the trick of the “variation
of constants” can be found. For the Hamiltonian case the corresponding proof was
carried out by Salamon and Zehnder in [14].
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There is a large literature on the more delicate aspects of the invariant curve
theorem. For example, the minimal smoothness assumption for the validity of
the theorem have been studied by Riissmann [12] and in the extensive papers by
M. Herman [3], (4], where one finds a wealth of further results on this problem,
e.g on the break-down of invariant curves. In the analytic case the Diophantine
condition can be replaced by a weaker one, the so-called Brjuno condition. This
situation has been studied with great precision by Rissmann, see (13]. In particular,
we want to point out that his arguments in (12] and [10] lead to an improvement
of the estimates in Lemma 9: one can replace the exponent 0 +2 by o +1in (20),
and consequently one can replace 7 =0 + 2 by 7 = o + 1 in the text following this
Lemma.

This list of references is certainly not complete, and the reader can find more
information in the papers quoted. In particular, the Section 16 of the survey of
Mather and Forni [7] contains a discussion of various results on annulus mappings.

We also want to point out that generically analytic maps possess near an elliptic
fixed point besides the invariant curves also invariant Mather sets, which are Cantor
sets. More precisely, if one fixes a germ of an elliptic fixed point of general type, one
can, by arbitrarily small change of terms of arbitrary higher order, achieve that the
so modified map possesses such nondegenerate Mather sets in every neighborhood
of the fixed point. This was proven by C. Genecand [2], sharpening the earlier paper
by Zehnder [16]. All the above mentioned proofs are based on functional analytic
methods and iteration technique. An interesting proof avoiding these iterative
approximations entirely is the paper by Y. Katznelson and Ornstein [5], (6]. It is
based on delicate estimates on the orbits of the mappings. It gives sharper results,
but is not easy to read.

Applying (18) of Lemma 8 to up with 7 = ro and N = Ny, we obtain

l’lL1 - ’LL()'T1 < Z
and .

p— < —_,

|(u1 — uo)el 5o

for small enough 8. The first of these two estimates implies (u1,uf) € Dr, while
the second, together with the bounds (8) on (uo)s, implies |(u1)sl [(u1)5 ] < 2Uo.
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