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Newtonian Dynamics = “Spring Theory”
A simple but illuminating equivalence 

exists between Newtonian mechanics of a 
particle and the statics of Hookean springs. 
In light of this equivalence, some basic 
facts of Hamiltonian mechanics become 
truly transparent. One can see, with very 
few formulas, why energy is conserved 
in Hamiltonian systems and why these 
systems preserve Poincaré’s integral invari-
ants, among other things. Here is a brief 
sketch of this equivalence; more details can 
be found in [1].

We look at a point mass m with potential 
energy P P x x n= ∈( ),  in some conser-
vative force field. Hamilton’s principle in 
this setting says that the motions x(t) are 
stationary functions of the action
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with fixed ends ( , )0 0x and ( , )T xT  in the 
time–space    ( , ).t x  

Generations of students of the subject 
have been bothered by the depressing lack 
of a physical interpretation of the difference 
K P− .  Einstein made an absolutely strik-
ing observation that (1) is the first signifi-
cant term in the relativistic expression 
Edt∫ ∗ , where t∗  is the particle’s proper 

time and E is the energy; so, (1) does have 
an independent meaning—a relativistic one. 
Setting this gem aside, however, I would 
like to stick to classical mechanics.

The action (1)—which comes from 
dynamics—admits a static interpretation. 
As an Archemedian thought experiment, 
let’s hang an idealized spring by two ends 
(see Figure 1). Consider the child’s toy 
“slinky,” which we treat as a one–dimen-
sional object, perhaps thinking of it alterna-
tively as a heavy rubber band that stretches 
non–uniformly, as shown in the same fig-
ure. There is no resistance to bending, and 
our spring satisfies linear Hooke’s law. The 
spring has mass, and we denote Hooke’s 

constant of the unit mass of the spring by 
m, suggestively.1 

We parametrize the position x(t) of the 
spring’s particle by the mass t between the 
particle and the spring’s end, as seen in 
Figure 1. The spring’s total potential energy 
then turns out to be
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where U(x) is the potential energy of a unit 

mass; the term mx2

2
 is the stretching energy 

per unit mass.
Now (2) coincides with (1) if P U= − .  

We endowed the dynamic action (1) with a 
static meaning: the action (1) is the poten-
tial energy of a slinky placed in the force 
field with potential −P. Since I used no spe-
cial features of the gravitational field, this 
statement applies to any potential P.

And so the Newtonian dynamics is equiva-
lent to statics of springs. A table of equiva-
lence can be found on page 45 of 
[1], and lists static equivalents of 
velocity, momentum, etc.

Here are some examples and 
consequences of the aforemen-
tioned equivalence:

1. Connect the two ends of 
the slinky, making a loop, and place it in 
the repelling Coulomb field with potential 

U
r

= 1  in 


3  (see Figure 2). What are the 
possible equilibrium shapes of the loop? 
This is a static equivalent of Kepler’s prob-
lem (in the potential −U). We conclude that 
the equilibria are ellipses (assuming that 
the mass T of the spring is finite, which 
excludes parabolas and hyperbolas).

2. In the preceding example, what is the 
static equivalent of the conservation of 
angular momentum? It is the following: for 
any arc of the spring in the equilibrium in a 

1 More details on all of this can be found in [1]. 

central potential, the torques of the two ten-
sion forces exerted on the ends of the arc by 
the rest of the spring cancel each other out 
(torques are computed relative to the ori-
gin). Conservation of the angular momen-
tum is thus a consequence of Newton’s first 
law in its rotational version: zero angular 
acceleration means zero torque.

3. Conservation of total energy K P+  
in dynamics has a static counterpart. What 
is it? By asking this question I discovered 

something I hadn’t realized 
before but is obvious in ret-
rospect: the difference K U−  
between the energy densities 
(per unit mass) of stretching 
and of “elevation” is constant 
along the spring in equilib-

rium. As an example, consider the hanging 
spring in Figure 3. The higher the loop, the 
more it is stretched, i.e. both energy den-
sities increase with height—interestingly, 
by the same amount! This remark applies 
to any potential field, for instance to the 
Coulomb field of the previous example.

4. This is a (literally) hand–waving 
explanation of Poincaré’s integral invari-
ance. Imagine holding both ends of the 
spring in Figure 1 and moving the two 
hands cyclically and slowly, so as not to 
excite any vibrations. In doing so we per-
form zero net work:

     F dx F dxT T0 0 0
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with F FT0 ,  denoting the forces we exert. 
Putting this formula through the statics–
dynamics dictionary leads to
 
        p dx p dx

C TC T
T
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0
 ∫ ∫⋅ = ⋅ ,         (4)

where p mx=   is the momentum, C0  is a 
curve of initial data in phase space {( , )}x x
and CT  is the image of this curve under 
the phase flow after time T. Therefore, the 
Poincaré integral invariance follows from 
the general principle that a perpetual motion 

machine cannot work. Note that it was not 
even necessary to write the Hamiltonian 
equations of motion to obtain (4).

5. A quick derivation of the Euler–
Lagrange equation for (1), bypassing 
the (more general) method of Euler and 
Lagrange, is to observe that one can inter-
pret the minimizer of (1) as a minimizer of 
the potential energy of a spring in the field 
with potential −P. But a spring in such an 
energy–minimizing state is in equilibrium, 
and thus the sum of forces on each infini-
tesimal element vanishes. There are three 
of these forces: two tensions on the ends, 
mx t dt( )+  and −mx t( ),  and the force due 

to the ambient field, P x t dt O dt′ +( ( )) ( ).2  
Dividing the sum of all these by dt and 
setting dt→ 0  gives mx P x��+ =′( ) .0  We 
derived the Euler–Lagrange equation for (1) 
from Newton’s first law.
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Figure 1. A Hookean spring hanging by two ends, thought of either as a spring or an elastic latex band.

Figure 3. The fleeting time t  equals the 
static mass t . Equal times correspond to 
equal masses. A hanging spring gives a static 
view of the entire history (for 0 ≤ ≤t T) of the 
falling body (note the opposite directions of 
gravity, however). Position x t( )  of a spring’s 
particle is parametrized by the mass t  lying 
between the particle and the spring’s end.

Figure 2. An equilibrium shape in the repel-
ling Coulomb field is an ellipse. Conservation 
of the angular momentum in Kepler’s prob-
lem is equivalent to the torque balance for 
any segment. Loops count the time.


