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What is Entropy?
A short and clear answer to the question 

in the title of this article may be diffi-
cult to find (at least, it was for me). I would 
therefore like to illustrate the entropy of gas 
on the simple parody of ideal gas: a single 
particle—a “molecule”—that bounces elas-
tically between two stationary walls. To 
strip away the remaining technicalities, let’s 
take the molecule’s mass as m =1. Our 
system has one degree of freedom n =1 (as 
opposed to n = 3 in a monatomic gas).

Entropy in One Sentence
The phase plane trajectory of the particle 

in Figure 1 is a rectangle with area 2vL. 
The entropy S  of the “gas” in Figure 1 is 
the logarithm of the area inside the phase 
plane trajectory:1 

				     (1)S vL= =ln( ) ln( ).area 2

Taking the log in (1) is a natural (apolo-
gies for the pun) choice. For one, it makes 
the entropy additive. Indeed, consider 
a system that consists of two “vessels” 
with lengths L

1
, L

2
 and speeds v

1
, v

2
 (see 

Figure 2a). The phase space is now the 
Cartesian product {( , ; , }).x v x v
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 The 

four-dimensional volume of the Cartesian 
product of two rectangles is 2 2
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v L v L = 

Area Area
1 2

; the logarithm of the product 
is thus S S S= +

1 2
.

Another motivation for taking the loga-
rithm is that it makes entropy (1) analogous 
to Shannon’s entropy. Roughly speaking 
and in the simplest setting, this latter entro-

1  The same definition applies to the actual 
gas; in that case, the area is replaced by the 
volume that is enclosed by the energy surface 
in the phase space. The dimension of this 
space is enormous, and the volume must be 
measured in appropriate units.

				     (4)T v= 2

is twice the kinetic energy of the molecule. 
I put “temperature” in quotes because it 
is measured in units of energy rather than 
degrees. The coefficient that relates the two 
units is called the Boltzmann constant.

Boltzmann Constant
One can measure the temperature of a 

gas in units of average kinetic energy of 
a molecule3 per degree of freedom, or in 
Kelvin degrees. The coefficient between 
these two measures is called the Boltzmann 
constant k

B
:

1 2

n
mv k T
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= ,

where n  is the number of 
degrees of freedom and T  
is in Kelvin units. To put it 

differently, kB  is the kinetic energy per 
molecule per degree of freedom that 
is required to raise the temperature by 
2°K. Not surprisingly, it is a tiny num-
ber: k J K

B
≈ × −1 4 10 23. /  (joules per 

Kelvin). The units of temperature in (4) 
are the same as those of kinetic energy, so 
“kB”=1 (and also n=1) in that case.

Entropy Increase
When two substances are mixed, the 

entropy of the mixture is greater than the 
sum of the original entropies:

S S S
mixture

> +
1 2

.

For our one-dimensional gas, this state-
ment borders on triviality. Indeed, consider 
two side-by-side vessels (see Figure 2). 

3  Twice the kinetic energy as in (4).

Removing the wall does not affect the 
speeds but does increase the “volume,” 
which becomes L L L= +

1 2
 so that 

S L v L v
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Adiabatic Processes
All thermodynamics texts mention that 

entropy does not change during adiabatic 
processes.4 For our “gas,” this amounts to 
the following rigorously proved statement: 
If the length L L t= ( )e  changes smoothly 
over the time interval 0 1£ £t / ,e  then the 
product Lv  changes by the amount O( )e  if 
e is sufficiently small.

This basic example captures the essen-
tial mechanism and the reason for adia-
batic invariance of entropy in ideal gases. 
However, no rigorous proof of adiabatic 
invariance exists — even for the sim-
plest system of two “molecules” that are 
modeled by hard disks bouncing inside a 
square with slowly moving walls. The gap 
between what we believe and what we can 
prove is enormous.

In conclusion, it seems that discussions 
of entropy—at least on simple phase plane 
examples like the one here—belong in 
dynamical systems textbooks (and in phys-
ics texts when entropy is mentioned).

The figures in this article were provided 
by the author.
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4  I.e., a slow change of vessel with no heat 
or mass exchange with the outside.

py counts the number of letters in a word; 
this number is then the logarithm of the 
number of possible words.2 The area in 
Figure 1 is the most natural measure of the 
“number of possible states,” thus making S  
a continuous analog of Shannon’s entropy.

If we add small amount dQ  of heat to the 
gas at temperature T, why does the entropy 
change according to
			    

dS
dQ
T

= ,
			    	

(2)

the standard formula in most physics 
textbooks? Feynman’s beautiful lectures 
explain (2) in a more realistic 
setting but take a few pages, so 
here is a quick explanation of 
(2) in our simple case.

Explanation of (2)
Let’s add heat dQ by 

increasing the kinetic energy of the molecule 
in Figure 1, which amounts to increasing v :

			    
 	  	   		   (3)
	

dQ d v v dv= =( / ) .2 2
	

The change dv  in turn 
causes S vL= ln( )2  to 
change:

dQ

v

dQ
T2

= ,

where the “temperature” 

2  As long as one 
allows all possible combi-
nations of letters and each 
letter is equally probable.

Figure 1. The phase trajectory of a particle that bounces with 
speed v encloses area 2Lv.

Figure 2. Entropy increases when the wall between the vessels is removed.
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