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Measuring Curvature with a Bike
The following nice fact can be found in 

[1] (in a slightly different formulation than 
here): The center C of curvature of a bike’s  
rear track (see Figure 1) lies at the intersec-
tion point of the two axles’ extensions, i.e., 
of the normals to the front and rear tracks.

I speak here of a mathematician’s bike, 
namely of a fixed length segment RF whose 
front F moves along a prescribed path 
and whose rear R has velocity vector con-
strained to the line RF.

[1] posed the problem of finding a geo-
metrical proof for this neat fact. I offer such 
a proof/explanation here, along with a few 
additional observations.

To see without calculation why this curi-

ous fact holds, imagine first locking the 
steering angle a  to a fixed value, as in 
Figure 2. With the steering locked, the 
wheels will trace out two concentric circles 
with the center at the intersection point of 
the two axles, thus proving/explaining1 the 
claim for a= const.

1 Proofs which also explain why prob-
ably deserve a special name, something like 
“exproof.”

It remains to remove the 
constancy assumption, i.e., to 
explain why curvature k  does 
not in fact depend on the varia-
tion of a  but only on a  itself 
(and on the length l RF= ).

Referring to Figure 3, where 
R moves with speed 1 (treating the arc 
length s as the time), we have
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proving the independence of k  on d dsa/  
and thus justifying the original claim. 
Actually, the claim also follows directly from 

(1), which yields κ α− =1 l cot  and coin-
cides with RC l= cota  from Figure 1.

I was planning to stop here while writ-
ing this note, but then began to wonder if 
there a way to see the curvature k  itself, 
rather than the radius of curvature 
RC = 1/ .k  Figure 4 answers 
this question:

 
               

k = KR,
 

assuming l =1  for simplicity. 
Indeed, the triangles DFRC  and 
DKRF  are similar, so that (tak-

ing l RF= =1),

   KR
RC1
1

= , i.e.,

     
      KR RC⋅ = 1.

Thus, KR RC= = =− − −1 1 1( ) ,k k  as 
claimed.

Eyeballing k  while riding the bike would 
force one to look backwards (and with K 
passing from one side of the line RF to the 

other, doing so becomes particularly diffi-
cult and embarrassing). Here is a safer way, 
which avoids twisting the neck (or breaking 
it, if v  is large). Imagine mounting a light, 
or better, a laser pointer on the handlebar; 

then the deviation d of the light spot cast 
on the ground (see Figure 5) determines k  
(for l =1)  via

  κ ρ= +d O d/ ( ).3

From now on I will probably always think 
of k  when riding a bike at night.

The figures in this article were provided by 
the author.
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Figure 3. Proving (1) by applying " "/w=v r  
to compute the angular velocity of RF, i.e., 
the curvature at R.
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Figure 5. Measuring the curvature of the rear track with 
the bike light.

Figure 4. k=KR,  where K is the intersec-
tion point of the rear axle with the direction 
line of the front wheel. Here, l RF= =1.  


