NH
b

st

PHYSICA [

ELSEVIER Physica D 114 (1998) 230-236

A new randomness-generating mechanism
in forced relaxation oscillations
Mark Levi
Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Received 3 March 1997; received in revised form 2 July 1997; accepted 26 August 1997
Communicated by C.K.R.T. Jones
Abstract

This note points out that in a wide class of forced relaxation oscillators the hyperbolic behavior, which has up to now
been known to exist only on small set, dominates in the Lebesgue sense in a wide class of relaxation oscillators. This note
introduces the simplest physically realistic smooth system where the strange attractor is expected to exist for most (in the
Lebesgue sense) parameter values. This phenomenon went unobserved for over half a century since the first work on forced
relaxation oscillations by Cartwright, Littlewood and Levinson. Copyright © 1998 Elsevier Science B.V.

1. Background

Forced relaxation oscillations arise naturally as
models of nonlinear electric circuits with positive
feedback (among many other applications), and have
been studied since the early work of van der Pol
and van der Mark [15]. “Deterministic randomness”
has been exhibited in this system by Cartwright,
Littlewood and Levinson in the late 1940s, well
before the discovery of the Lorentz attractor. The
latter, however, shows the chaotic behavior in ex-
periments, while the former does not. In fact, it has
been shown earlier that the set of “chaotic” solutions
in forced van der Pol-type systems occupies zero
measure set in phase space, and thus is physically
unobservable. Despite the great progress in our un-
derstanding of low-dimensional dynamics there had
been no known differential equations for which the
existence of chaos for the set of initial conditions
of positive measure has been proven. It should be

mentioned in this connection that chaotic attractors of
positive measure should be expected on the basis of
recent work by Benedicks and Carleson [1] and the
(yet unpublished) work by Jakobson and Newhouse

18].

2. The main result

It has been known for over a decade that van
der Pol-type relaxation oscillators with forcing ex-
hibit chaotic behavior with zero probability, i.e. that
almost all initial conditions give rise to simple peri-
odic behavior, while only exceptional (unobservable)
solutions are “chaotic”. This note describes a previ-
ously unnoticed basic mechanism by which forced
relaxation oscillations can produce chaotic behavior
with “positive probability” — i.e. for a set of initial
conditions of positive measure, and in fact for the ma-
jority of solutions. This phenomenon is sketched in
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Section 6, with the necessary geometric background
given in Sections 3-5.

It is somewhat surprising that this simple basic
mechanism has been overlooked in the half century
since the original work by Cartwright and Littlewood
(this work culminates in Littlewood’s paper [13]). This
is a mechanism by which “chaos” can be generated by
nonlinear electric circuits, where “chaos” is meant in
the physical, i.e. experimentally observable sense, as
opposed to the “topological chaos” which one obtains
from horseshoe maps and which gives zero measure
sets of “interesting” initial conditions. (The hyper-
bolic set in the zero-measure case is, nevertheless,
physically significant in providing the “watershed”,
i.e. the basin boundary for coexisting attractors.)

3. Geometry of the phase flow

In all forced relaxation oscillators studied previ-
ously [6,10,12-14] the phase flow stretches only a
minority of initial conditions, while almost all other
solutions are attracted to stable periodic solutions.
This prevalence of contraction over most of the phase
space is responsible for the fact that the hyperbolic
(“chaotic™) sets of solutions in relaxation oscillators
studied up to now have zero measure; this explains
why deterministic randomness has not been observed
in numerical and physical experiments on relaxation
oscillators [3,9].

A typical forced relaxation oscillator is given by

1
X =-P(x,y)
€
—ex 4+ bp(1),

(D

¥y

where the forcing p is taken with zero average.

The two cases of singular curves @ (x, y) = 0, one
for the van der Pol-type equations and the other for the
case discussed here, are shown in Fig. 1. We describe
the dynamics of the oscillator as a “movie”. !

! For the “bare essence” heuristic description of the stretching
phenomenon the reader may wish to skip to Section 6. It should
be pointed out, however, that the description does not explain
why most initial conditions stretch — for that one has to “watch”
the “movie” described here.

There are three key properties of the flow that com-
bine to give the interesting behavior.

Property 1. The fast horizontal flow to the left below
the singular curve and to the right above it, lead-
ing to the compression towards the left and right
branches and the repulsion from the middle branch of
D(x,y) = 0.

Property 2. The near-periodic vertical oscillations: in-
tegrating the second equation in (1) we obtain

r

¥ (1) = ¥(0) —e/x(r)dt bR,
0

where P(1) = fé p(t)dr is periodic since p has zero
average.

Property 3. The vertical shear —ex.

These effects are listed in the decreasing order of
their magnitudes O™, O(eo) and Of(e), respec-
tively; we show now how these effects determine the
shape of the Poincaré map, as was done in [10]. To
that end we start with a large disc D of initial condi-
tions; by Property 1 it collapses onto the shape shown
in Fig. 2; this happens in a short time (on the order of
O(e In¢)), and the solutions will stay captured in that
set for all time. We now trace the consequent defor-
mation of this set under the flow.

By Property 2, the y-coordinates reach their maxi-
mum (roughly) when P (¢) is maximal; let us assume
that it happens at half-period t = 7/2 — this amounts
to the assumption that p(r) > 0 for 0 < t < T/2
and p(r) < O for T/2 <t < T. As t changes from
O(elne) to t = T/2, the points in the neighborhood
of the left branch of the singular curve slide upwards
along that branch; if they reach its end,? they fall
onto the right branch. The image ¢'/2(D) is shown
in Fig. 2; here ¢ is the r-advance map for Eq. (1), i.e.
@' (z) denotes the solution whose initial condition is z
att = 0.

2 With enough time to spare before the end of the half-period.
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Fig. 1. The singular curve for the classical van der Pol case and for the case with chaotic attractor.

As t increases further from 7/2 to NT with N =
1/€, the “ears” along the two stable branches retract
gradually, due to the shear (Property 3), and the re-
sulting picture is shown in Fig. 2. It should be noted
in particular that the vertical dimension of ¢>NT(D) is
not 2m, as one might expect, but 2m — hP + o(€%),
Fig. 2, as we now explain. To estimate this vertical
dimension we note that the vertical travel during 0 <
t < T/2 for each phase point is given by

T2 T2
.v(T/2>—y(0>=bfp<r)dr—e/x<r>dr
0 0
=bP + Oe).

Any portion of the set ¢’ (D) that rises along the left
branch above the level y = m is swept to the right by

the fast flow; similarly, anything that descends during
T/2 <t < T along the right branch below y = —m is
swept to the left. This process of vertical oscillations
“shaves off” any portion of the set ¢’ (D) which sticks
out of the strip —m < y < m of width 2m. It follows
that the approximate vertical width of the set ¢/ (D) is
2m — b P for sufficiently large ¢. In particular, for the
dynamics to be nontrivial we assume 2m — hP > 0,
ie. b <2m/P.

Similiar arguments (cf. [10]) show that a properly
chosen small disk Dy, surrounding the unstable fixed
point ofd)T expands, and thus there exists an annulus A
which maps into itself under @7 . The outer boundary
of A contains ¢"'7 (D) for all n large enough, while the
inner boundary of A is contained in ¢"7 (Djy). Proof of
these statements can be adapted from [10} and we do
not give them here. Since one ¢ -iteration contracts
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t=T/
(here Tis
the forcing

t=nT,
with n~1/¢

The window W of
length ~¢ contains a
shorter subwindow
which is stretched between
the left and the right
branches.

The deformatio
of the window W

midway through the
trip upwards (t=nT+T/4).

Fig. 2. Geometry of the phase flow. A “fat™ initial annulus A becomes thin after O(1/¢) iterations.

towards the stable branch by the factor of e /¢, and
since all points spend O(1/¢) iterations near a stable
branch before jumping to the other stable branch, the
annulus A can be constructed so that its thickness near
the ends of stable branches is O(e“'/sz).

4. The window map and the circle map

We define the “window” W in the phase plane,
Fig. 2, by choosing a horizontal segment L| connect-

ing the inner and the outer boundaries of the annulus
as shown in figure, letting Lo = ¢~7 L) and letting
W be the part of the annulus A which lies between
Lo and L. By this defintion, every point in the phase
plane, with the exception of the unstable fixed point
of ¢ visits W once and hence repeatedly. We de-
fine the window map ¥y : W — W as the first re-
turn map to W. In other words, ¥y is the Poincaré
map of the flow on the extended phase space with
W x {t = 0(mod T)} as the Poincaré section. Equiv-
alently, iy (z) = ¢/7(z) € W, where j = j(z) >
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0 is the smallest integer for which the last inclusion
holds. Since j depends on z, the map is discontin-
uous. This discontinuity is removed, however, if we
identify each point with its ¢7 -iterate: indeed, the dis-
continuity manifests itself in jumps by one iterate, and
the identification removes precisely such jumps. At
the same time the identification turns W into an an-
nulus; to summarize, we obtain a continuous map of
the annulus W. The entire qualitative behavior of the
differential equation (1) is captured by the window
map ¥y : W — W (without risking a confusion we
keep the notation W for the annulus). In particular,
periodic solutions of the differential equation corre-
spond to periodic points of Wy ; stability of the for-
mer coincides with stability of the latter, and so on.
The only information missing in the annulus mapping,
namely, the length of the period of solutions, can be
easily recovered from simple additional considerations
[10].

4.1. Rescaling and the circle mapping

Since the length of W is O(e) while the thick-
ness is e~/¢* it is convenient to introduce a rescaling
transformation S : W — Wy = [0, 1] x [0, e~ /<]
which normalizes the window map to the form ¥y =
SoWy oS~ We also define the associated projected
circle map ¥y : S' — S! by ¥y (s) = 71 o ¥n (0. 5),
where m is the projection onto the first coordinate
axis.

4.2. Factorization by symmetry

Symmetry properties of @ (x, y) and of p(r) trans-
late into a nice symmetry property of the window map:
it turns out that ¥y can be expressed as a second it-
erate Wy = ¥ o ¥ of a simpler annulus mapping ¥
whose projected circle map is shown in Fig. 1. The
proof of this statement can be found in [10] and in
[11]. We only mention here that ¥ is the antipodal
return half-period map, i.e. ¥ is defined by rescal-
ing as mentioned above the map z > —¢"T+7/2; ¢
W, where n = n(zg) > 0 is the smallest integer for
which the last inclusion holds. For the projected cir-
cle map we have ¥y = ¥ o ¢; a possible graph of

¢ is sketched in Fig. 1. To summarize these prepara-
tory remarks, the study of the relaxation oscillator re-
duces to the study of an annulus map ¥ : Wy — Wy
and of the projected circle mapping . The advantage
of such reduction lies in the greater simplicity of the
mapping ¥ = /¥y in comparison to the map Yy
and especially in comparison with ¢7 .

5. Behavior of the window mapping

The gist of the main result of the paper is contained
in the following theorem, according to which the pro-
jected circle mapping and hence the Poincaré map it-
self is stretching on most of its domain. We recall that
¥ . Wy — W, is the normalized antipodal half-period
return mapping associated with the system (1) as de-
scribed above, and ¢ : R(mod 1) — R(mod 1) is the
corresponding projected circle map.

Theorem. If the vectorfield (1) satisfies conditions
(A)—(C) below, and if « < b < 2m/13 — k for some
k > 0, then for all sufficiently small ¢ the Poincaré
map ¢7 of (1) is stretching on most of its domain.
More precisely, for the circle map y there exists a
constant o > 1 independent of ¢ and an interval I
on the circle R(mod 1), with |I.| < /€, such that

[ (s)l > @ > 1 forall s outside /. (2)

The 2D window map ¥ has a similar behavior: there
exists a family of vertical and horizontal sectors of
tangent vectors:

Hy = (. n): Il < plgl),
Ve =1E gl < wnlh,
nt=0E""

u = OCe),

such that at all z = (x,y) € Wy with x & [, the
horizontal sector at z maps into the horizontal sector

at ¥z under d¥, similarly for vertical sectors:
(d¥)H, C H,. (dvHv, c V.

with proper stretching: for ¢; = (&,7;) = d¥! (§. 10).
[ = =1, we have

lo € Hy, implies & > a&y
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and

no € V, implies n_| > Kcno.
K = 0@E/<), ¢>0. (3)

Inside the interval /. the following holds: there is
a subinterval I/ C I such that the same estimates
as above hold for 7/ with the stretching estimate (3)
strengthened to

lo € H,, implies & > B.&.
Be>e > 1, ¢>0. (4)

Conditions
(A) The singular curve @(x, y) = 0 consists of two
stable branches and of one unstable branch as
shown in Fig. 1, all with negative slopes:

&TX >0 forall (x,y) with x # %1.

.

Morever, let (—1, m) and (1, —m) be the coordi-
nates of the two points where the unstable branch
meets the stable branches (there is no loss of gen-
erality in assuming the x-coordinates to be £1.)
An extra requirement is that @ (x*, m) = 0 has
a positive root x* > 0. Equivalently, this condi-
tion amounts to the assumption that the part of
the right stable branch inside the strip |y| < m
lies entirely in the right half-plane where the drift
—ex is downwards; similarly, for the left stable
branch.

D, ,
‘(—D—\ >c¢>0 and [Dy(x,y)| >c¢c >0

(B)
for all (x, y);
in particular, all slopes have positive lower
bounds.

(C) The forcing term p(f) is piecewise continuous,
periodic of period T > 0, satisfies p(t}) = ¢ > 0
for all ¢ outside a sufficiently small interval, and
pt) > 0for 0 <t < T/2 and p(r) < O for
T/2 <t < T. We assume in addition that p(r) is
odd and that p(r + T/2) is odd.

It has not been proven that the map ¥ satisfying
the conclusions of the above theorem, together with
some additional assumptions, posesses a transitive at-
tractor with positive Lyapunov exponents, for a set of

b-values of positive Lebesgue measure. The experi-
mental significance of the above theorem, however,
does not depend on these rather technical and difficult
points: for practical purposes, the behavior in the sit-
uation described here will look random for most pa-
rameter values, whether or not the attractor is chaotic
in a rigorous sense.

6. A heuristic explanation of the stretching
phenomenon

The key to the explanation lies in understanding the
flow near the stable branches of the singular curve
@(x.y) = 0. A “typical” solution z(t) = (x(1), y(1))
is confined to an O(e)-tubular neighborhood of a sta-
ble branch for all times except for the relatively short
transition intervals.® Consider the linearized equa-
tions around such a solution:

1
&= ;(@‘Dx(x, VE + Dy (x, yIn), )
n=—€&.

This system inherits the relaxation character from
(1), and after a short settling relaxation time* we
obtain

&8+ d))'n = O(e),

which gives

£= -2y 40
———aﬂ-{' (€).

Substitution of this relation into the second equa-
tion of (5) gives, after dropping the O(e?)-terms, the
estimate

k=2

= ek(x, y)n.
n (x, y)n .

3 Here “typical” refers to the majority, in the sense of Lebesque
measure, of trajectories which do not follow the unstable branch.
These latter trajectories which do follow the unstable branch
are responsible for the short interval I where the circle map
is very strongly expanding.

4In this heuristic discussion we do not specify the precise
meaning of shortness of time intervals, etc.; the details will
appear elsewhere.
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It should be noted that k = —1/(slope of {®(z) = 0}),
and thus k£ > 0 for as long as z(z) is near the stable
branch. This explains the stretching phenomenon:

() _ o INEOT,
n(0)
¢ > 0 independent of €,

> 14 ce,

with ¢ independent of €. Since the map ¥ involves
O(1/¢) iterations of ¢7, this implies the stretching
property of the circle map, as stated in the theorem.
Detailed proofs will appear elsewhere.

Among the open questions there remains a difficult
problem of proving the same properties for the case
when the singular curve is smooth.
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