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BOUNDEDNESS OF SOLUTIONS FOR QUASIPERIODIC
POTENTIALS"

M. LEVI! AND E. ZEHNDER?

Abstract. In this paper conservative systems are studied describing the motion of a particle on
the line in the field of a potential force with additional quasiperiodic time dependence.

It is shown that superquadratic growth of the potential at infinity results in the near-integrability
of the Hamiltonian system in question (for a large class of potentials), despite the fact that no
smallness assumptions are made on the quasiperiodic dependence of the potential on time. As a
consequence all the solutions of such systems are bounded for all time. Some specific examples are
given, together with a counterexample which shows that, without the quasiperiodicity assumption,
the boundedness breaks down.
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1. Introduction and results. We shall study the boundedness of all solutions
of time-dependent equations having the form

(1) i+ Vy(z,wt) =0, z€R.

This equation is the simplest yet highly nontrivial model of conservative systems
such as charged particles in periodic fields. Setting £ = y, these equations can be
rewritten in Hamiltonian form with Hamiltonian functions

(2) H(z,y,t) = %yz +V(z,wt)

on the extended phase space (z,y,t) € R®.

A distinguished class of equations describe forced pendulum-like systems in which
the potential is assumed to be periodic in z such that V is a function on S' x
R. If, in addition, the time dependence is periodic or even quasiperiodic, then it
turns out that every solution z(t) of (1) is bounded in the phase space S' x R, i.e.,
sup{|Z(t)|,t € R} < oo, provided that only the potential V is sufficiently smooth
and, in the quasiperiodic case, the frequencies meet a Diophantine condition. The
proof of this phenomenon is based on the observation that such systems are near
so-called integrable systems in the region of the phase space S' x R in which y is
sufficiently large. For proofs we refer to Levi [12], Moser [13], and Chierchia and
Zehnder [14]. If, however, the smoothness requirements are not met, for example, if
V merely belongs to the class C?, then unbounded solutions may be expected. Also,
if the above restrictions on the time dependence are dropped, unbounded solutions
are likely to occur even for smooth and bounded potentials V.

If the periodicity requirement in z is dropped, then the configuration space is no
longer S* but R}, and the question of boundedness of all solutions for (1) is much
more subtle. It is related to the asymptotic behavior of the nonlinearity in z, the
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Fi1G. 1.1.

smoothness of V', and also the nature of the time dependence. For example, if

1

1
H =2
(,y,8) = 3¥" + —= =7

for a time periodic and positive function 7(t), as in the case of the so-called restricted
three-body problem, then the solutions with initial conditions £(0) = y(0) sufficiently
large are clearly not bounded. Here the level lines of H(z,y,t) = E for frozen t are
not closed curves if E is large. In contrast, in the example

(3) i+ a(t)z® + b(t)2? + c(t)z = p(t)

level lines for E large are closed curves; see Fig. 1.1. However, the energy is not
conserved in time and might increase, forcing a solution to be unbounded in the
phase space R2. For this class of examples the subtle question of boundedness of
solutions was already raised by Littlewood, who constructed examples (2] admitting
unbounded solutions assuming a periodic but discontinuous forcing p(t); see also Levi
[3] and Long [4]. Recently Zharnitsky [30] succeeded in constructing such an example
with p(t) discontinuous. In 1976 Morris (5] succeeded in proving that, for a continuous
time periodic forcing, all the solutions of

i+ 23 = p(t)

are bounded in R2. For more recent results in the time periodic case we refer to
[6]-[9], [16]. We also mention the related problem of Ulam and Fermi’s “ping-pong,”
consisting of a particle bouncing between a wall and a periodically moving “paddle”
parallel to the wall, undergoing perfectly elastic collisions with both; a basic physical
question is whether the energy of a particle stays bounded for all time in such a
periodically varying system. It should be mentioned that this problem is a limiting
case of the aforementioned problems where the walls of the potential well become
infinitely steep. The affirmative answer to the last question for sufficiently smooth
periodic motions of the wall has been given by Moser (in an unpublished, private
communication), Douady [27], and in [6]. In what follows we shall assume that the

time dependence in (1) is quasiperiodic with frequencies w = (w, ... ,wn) € RV e,
we assume

(4) V(z,wt) = V(z,wit,...,wnt),

where V(z,&1,...,EN) is assumed to be periodic of period 1 in all the variables

&1, ...,€En. Moreover, we shall assume that the frequencies w are not only rationally
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independent, but meet the Diophantine conditions
(5) w, /)| = 15177 for all j € Z¥\{0}

with two constants 7 > N and v > 0. The brackets on the left-hand side denote the
scalar product.
The system considered first is of the form

2n+2

(6) Viz,wt)= Y a;(wt)a?,

=1

n > 1, where all the coefficients are quasiperiodic functions in time with the same
frequencies w € R and, in addition, the leading coefficient a = a2, is positive:

(M a(wt) 2 52‘}% a(§) > 0.

1.1. Stability and invariant tori for polynomial potentials.

THEOREM 1. Let the polynomial potential V(z,wt) satisfy (6) and (7) together
with the Diophantine conditions (5), and assume that a; € C* (TN) fork > 47 + 6
and 0 < j < 2n+ 2. Then all solutions z(t) of £ + Vi(x,wt) = 0 are bounded, i.e.,

sup(z(t)? + £(t)?) < oo.
teR
Note that the smoothness requirement depends only on the number of the under-
lying frequencies w and not on the degree of the polynomial in z. Already for the time
periodic case this statement is not quite obvious. It has only recently been proved by
Laederich and Levi in [6], improving and simplifying an earlier result of Dieckerhoff
and Zehnder [7]. We should point out that all the boundedness proofs in the time
periodic case use Moser’s twist theorem [19] and its regularity improvements [10} and
[11] in a crucial way.
In order to describe the idea of the proof in the quasiperiodic case, we write the
equation as a system in the phase space R3,

z=y,
(8) y = —Vz(l', t)1
t=1,

and abbreviate the vector field in R? on the right-hand side by X. For C > 0 we
denote by A¢ the region Ac = {(z,y,t)|z? + y* > C} in R3. For every C > 0 we
shall construct an embedded cylinder w : R x S — R? contained in Ac,

(9 w: (¢, 8) — (ult, s),v(t, s),t),
satisfying

C < inf (v2+v?) < sup (u?+v?) < o0
RxS? RxS!

and which is tangential to the vector field X in R, so that it is invariant under the
flow of X. Now if a solution (z(t),y(t),t) of (8) satisfies z(¢*)% + y(t*)? < C for some
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t* € R, then it follows from the invariance of the cylinder and the uniqueness of the
solutions that this solution does exist for all times ¢ € R and satisfies, in addition,
(z(t)? + y(t)?) < supgrys(u? +v?) < oo for all t € R. Hence it is bounded.

The existence of these invariant surfaces in R® will be concluded from the obser-
vation that the system (8) is in the region A¢ near an integrable system, provided
that C is sufficiently large, so that well-known small denominator perturbation tech-
niques can be applied. These techniques require an excessive amount of smoothness;
this is, of course, well known. The near integrability is, however, not obvious a priori
and its proof is the main task. It will be apparent only after scaling the time ¢ and
the phase space variables and only after several coordinate changes, which transform
the vector field into a suitable form.

The invariant surface found consists of quasiperiodic solutions, and we shall prove
the following existence statement.

THEOREM 2. The equation

Z+ Ve(z,wt) =0

with the potential V' satisfying the assumptions of Theorem 1 possesses uncountably
many quasiperiodic solutions having 1 + N frequencies (a,w) € RN and satisfying
the Diophantine conditions

|lak + (w, ) 2 (k| + i)

for all (k,7) € Z*tN\{0} with the same constants v > 0 and 7 > N as in (5).

Indeed, as expected, the dominant part of the phase space for z2 + #? large is
covered by quasiperiodic solutions. The worst possible failure of the Diophantine
condition (5) corresponds to all frequencies w being rational multiples of one of them;
in this case V' is time periodic and the aforementioned results for the periodic case
apply, showing boundedness under appropriate assumptions.

The intermediate (Liouville) case between the periodic one and the Diophantine
one is less clear. It seems highly likely that when w is a Liouville vector, where (5)
fails for infinitely many j, an arbitrarily small change in V would destroy an invariant
surface with fixed frequencies if there is one; see Mather [21]. On the other hand, it is
less clear whether all such tori can be destroyed at once, or perhaps the destruction
of one torus could lead to the creation of another one.

1.2. General potentials. So far we have considered a rather restricted class of
potentials. It turns out that the ideas of the proof of the aforementioned Theorems
can be applied to a more general class of quasiperiodic potentials introduced recently
in [15] for the time periodic case.

THEOREM 3. Ifw satisfies the Diophantine conditions (5) then there exist positive
constants a, b, uo(b), and y(b) such that the conclusions of Theorems 1 and 2 hold for
the equation

I+ Ve(z,wt) = 0

provided V (z,€) with ¢ € R and £ € TV belongs to C%,d = 47 + 7 + v(b) and,
moreover, satisfies the following conditions:

(1)

Vic,£) - o0 as |z] — o0
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uniformly in £ € TN,
(ii) In the notation

VY _ Y
W.= 7 and U : = v

the following estimates hold for all (z,£) € R x RN and |z| large:
. 1 1
(iia) ~3 + a<8,W(z,§)<§—b, b<l-—a,

(ib) |05 02 V(2,)| < Cra le|*[V(2, ) for some 0< < puo(b)
and
|0 9 U, 105 0 W| < Cia |2* =

for all |k} + |a] < 47 + 6 + v(b).
~ This theorem will be proved in §4.
Ezamples. The above conditions (i) and (ii) with x = 0 hold for polynomial
(in z) potentials. With p # 0 the class of potentials widens considerably to include
exponential growth, oscillatory growth, and much more. The simplest example is
Vi(z,t) = p(wt) cosh z; it satisfies all the conditions if p > 0 is smooth enough.
A more difficult potential

Va(z,t) = p(wt)(coshz + q(z)),

where ¢ is any polynomial, satisfies conditions (i) and (ii) as well, again provided
p: T™ — R is smooth enough. The polynomial ¢g(z) in the above example can be
replaced by, say, cosz or a polynomial in x and cos z without violating the conditions
of Theorem 3: .

Va(z,t) = p{wt)(coshz + g1 (z,cosz)).
Yet another example is
Vi(z,t) = cosh [(3 + cost + cos V2t)(z + sin(1 + 2%)”)]

with v > 0 sufficiently (specifically) small.

The list can be continued indefinitely.

It should be emphasized that analogous stability results cannot be expected in
higher dimensions. Consider, for example, a time-dependent Hamiltonian system
defined by the Hamiltonian function

H(o,,,0) = S + Vizwt)

on (z,y) € T x IR™ for which the energy is not conserved. Here one also finds an
abundance of quasiperiodic solutions in the region of the phase space where |y| is large,
in which the system can be considered as a system near an integrable one, provided
V is sufficiently smooth; see, e.g., [14]. However, if n > 1 then the existence of these
solutions does not lead to bounds for all solutions of the system. But there are bounds
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for all solutions not over an infinite interval of time but over an exponentially large
interval of time, provided the potential is not only smooth but real analytic. This
well-known phenomenon has been discovered by Nekhoroshev [25]. As an illustration
we mention the effective bounds for the above example. Assume V'(¢,z) with (t,z) €
IR"™ x T™ has a holomorphic extension to an imaginary strip |Im¢| < o and {Imt| < o
for some positive number o. Then there are positive constants T* and R* depending
on V, o, and the dimension n such that, for every p > R* and every solution (z(t), y(t))
of the Hamiltonian equation, we have

ly(t) —y(0)} < p

for all ¢ in the interval
. P \®
< el
[t} < T"exp (R*)

The proof of these estimates with explicit constants is based on Nekhoroshev’s ideas,
and we refer to [26] (with o = 2/(n? + n)) and [28] and [29)] for the recently improved
estimate with a = 517—1 This is merely a special example of an exponential stability
result which replaces the stronger stability results of Theorem 3 for systems in higher

dimensions.

1.3. Unbounded solutions with nonrecurrent forcing. We shall show that,
as soon as the quasiperiodicity requirement of the time dependence is removed, even
the “nicest” equations can have unbounded solutions for forcing terms which are
smooth, small, and tend to zero as the time goes to infinity.

THEOREM 4. Given any e > 0 and any r € N, there ezists a function p € C*°(R)
satisfying

(10) Ipllcrmy S € and lim Dip(t) =0 for 0< j <r—1,
—00
such that the equation
(11) i+ 2° = p(t)
possesses an unbounded solution y(t). Moreover, the rate of decay in (10) is given by
(12) sup t 7 | Dip(t)] < oo
>0
for 0 < j <r—1, and the rate of growth of the unbounded solution y(t) is given by
1 s 1 1 4
13 —t753 < —g(t)2 + -y(t)* < Ctz=+
(13) ST < (07 + (0 <

for t > 1 with a positive constant C depending on €.

It should be pointed out that the first part of the theorem holds true for every
equation £+ V,(z) = p(t) provided that 1V (z) — oo as |z| — oo; i.e., an unbounded
solution can be produced with a forcing satisfying (10). This will follow from the
proof. As for another, more subtle phenomenon we recall that Coffman and Ullrich
[22] constructed a positive and continuous function p(t) close to a constant, which,
however, is not of bounded variation near a point t*, such that the equation Z +
p(t)z = 0 has a solution which is unbounded on the finite interval 0 <t < ¢*.
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2. A “squash player’s” potential and some open problems. Let M>0
be a large integer and consider equation (1) with the special potential

Vig,wt) = (z — 1)°M + i (z/ps(wi )™,

i=1

where 0 < p;i(7) < 1 are periodic functions of period 1. Since M is large, V has
two steep “walls,” one near z = 0 and the other near z = min<icn {pj(wit)}; see
Fig. 2.1. One may think of n squash players each moving his racket periodically,
holding it at the distance p;(w;t) from the wall z = 0. The player whose racket is in
front, i.e., closest to the wall at a given moment, “gets to hit the ball.” It would make
sense to assume that min, p;(7) < max p;(r) for all 4,j = 1,...,n, so that everyone

gets a chance to hit. Now Theorem 1 shows that as long as the frequency vector
w is Diophantine and p; € C¥(S!) with k > 47 + 6, the game will proceed without
an escalation, i.e., both the speed and the position of any possible motion will stay
bounded for all ¢ € R. Of course, no explicit estimate on that bound is given and no
estimate is given on how deep the potential wall is penetrated.

Open problems. 1. Modifying the “squash” example by making the walls rigid,
we obtain a problem not covered by Theorems 1 or 2. In fact, it is doubtful that the
result still holds for such a modification since the smoothness of the “potential” is
lost in taking the rigid limit.

2. As for a different modification, one could consider the Ulam-Fermi “ping-
pong” problem consisting of a particle bouncing elastically between two parallel walls
with the walls undergoing a quasiperiodic motion. The problem is to prove that the
velocity of every motion is bounded for all time provided the motion of the walls is
smooth enough and the Diophantine conditions hold by establishing the existence of
invariant cylinders in the extended phase space of the system.

3. Proof of Theorems 1 and 2. We first transform the equation
(14) I+ Ve(z,wt) =0, z€R

with V satisfying assumptions (4)—(7) into a suitable form. We proceed in several
steps.

3.1. The rescaling into a slow system. As in [6] we first rescale the time
variable ¢ and, at the same time, the space variable z setting for small § > 0,

(15) u=26z, t =€s, where £=6".
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If z(t) is a solution of (14), then
u(s) 1= bz(es)

is a solution of the equation
d? u ‘
(16) L + 26V, (S,Ews) =0, u€R.
In view of the assumptions on V' we are led to the equivalent differential equation
d2

17 a -
(17) dszu+Wu(u,sws,a) 0,

where W (u, £,¢), £ € TV is given by

2n+1

o 1

W(y, & €) = a(§u*™? + &° E aj({)ea(2"+1_7)u3 with a = ~
i=t

and @ = agn42; moreover, a; € C¥(TN). Now, returning to the old notation by
replacing u by z and s by ¢t we therefore arrive at the Hamiltonian system

(18) H(z,y,ewt,e) = —;-yQ + W(z,ewt,¢)

in the extended phase space (z,y,t) € R3. Our aim is to construct, for every ¢ > 0,
an invariant cylinder for (18) contained in (r,y,t) € A X R having the time axis in
its interior, where A is a fixed and bounded annular region in R? around the origin.

3.2. The action-angle variables. At first we consider the time-independent
Hamiltonian system in (z,y) € R? given by

(19) H@,9,6.¢) = 39 + W(z,6,),

which depends on the parameters £ € RY and € > 0. The dependence on each &; is
periodic with each period 1. If ¢ is sufficiently small one can introduce in an annulus-
like domain in the {z,y)-plane so-called action and angle variables (¢,I) — (z,¥),
using a generating function S{z,I) = S(z, [, £, ) depending periodically on £ by the
formula

Y= SI(:B,I),
(20) ¢ =51(z,I).

As usual [23], the action variable I is defined as the area of the level curve v in
R? defined by H(x,y,&,€) = E:

(21) I=/ydx=I(E,§,s).

If E exceeds all critical values of W in z, then v is a simple closed curve. Since
g—{: > 0 for E large enough and ¢ > 0 small enough, we can define the inverse function
of I(E) so that E is a well-defined function of (I,£,¢), which we denote by K°. The
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generating function S is then defined as the shaded area in Fig. 3.1 or, equivalently,
as the solution of

(22) KO(I’ &’6) = H(x7 Sm(x, I’ 67 E)’ {’ E);
it is independent of the angle variable . As in [6] one verifies that
(23) K°(I,€,¢) = a(§)I° + O(e°)

with 8 = 2:_:22 and a positive function a € C*¥(TN). Now setting £ = ewt, we
define the time-dependent symplectic transformation (20) by means of the generating
function S = S(z,I,ewt,¢). It transforms the Hamiltonian system (18) into the
system

(24) K(p, I, ewt,e) = K°(I,ewt,€) + %S(x, I,ewt, )

on the phase space (,1,t) € S* x R x R. Here I € R varies in a bounded interval
which is independent of €; € is small and z = z(p, I, ewt, €) in view of (20).

We denote the second term on the right-hand side by K'(p,I,euwt,€), so that
(24) becomes

K(o, I,ewt,e) = KO(I,ewt,e) + K (p, I, ewt.€).

In what follows it will be crucial that

(25) Ko, I ewt,e) = cw - -(%S(x, I ewt e) = O(e)

with all its (finitely many) derivatives in (¢, I, t). Here B%S is the gradient of S with
respect to .

3.3. Choosing the symplectic angle as time. The Hamiltonian equations
associated with the function K in (24) are, on the extended phase space (¢,1,t) €
S! x R x R, given by

dy
E - KI(@? Ia EWt7 E)v

dI
dt
dt
dt

(26) = —K,(p,1,cwt,¢),

=1
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It is well known that if the time ¢ and the “energy” K are chosen as the new conjugate
variables and the angle ¢ is chosen as the new time variable, then (26) is transformed
into an equation which is again Hamiltonian and belongs to a Hamiltonian function
Q, which is the inverse of the function I — K(y,I,ewt,c). Indeed, from (23) we
conclude that the partial derivative K; > 0 if ¢ is small, and we can therefore define
the transformation

g=t,
(27) P: p=K(p,I,eut,e),
s=¢

from (¢,I,t) € S* x R x R into (g,p,s) € R x R x S!. Denote by Q(§,p, ¢, ¢€) the
inverse function of I — K(g,I,&,¢), so that

(28) p = K(p,Q(ewt,p, p,€),ewt, €).

Then the flow induced in the (g,p,s)-space by (26) is Hamiltonian with @ as the
Hamiltonian function. This follows from Idy — Kdt = —(pdq — Qds) (see 23], [24])
or by a direct calculation which we now carry out. Abbreviating the vector field on
the right-hand side of (26) by X, one readily verifies, using (27) and (28), that the
transformed vector field is given by

df? 1
2l | =@ xop=| g1 a |,
s Q;l

where Q = Q(ewgq, p, s,€). Multiplying this vector field by the positive function @,
we find as claimed

d

d—z = Qp(ewq,p, s,¢),
(29)

dp

—d-.; - —Qq(qu,p,S,e),

where the new time variable s = ¢ is the old angle. One verifies, moreover, that

(30) Q(ewg, p; 5,€) = Q°(ewg, p, €) + Q' (ewg, p, s,¢),
where

(31) Q°(ewg, p,€) = blewq)p” + O(e*)

with v = 2’;";22 and a positive peribdic function b € C*(TV).

3.4. Removing the time dependence in the dominant term. In order to
relate the notation of the variables ¢, p,s of the Hamiltonian function (30) to their
original meaning, we return to the old notation and replace the variables (g, p, s) and
the Hamiltonian function Q by (¢, K,¢) and I, so that the Hamiltonian (30) in this
notation is

(32) I(ewt, K, p,€) = I°(ewt, K, &) + e I* (ewt, K, ¢, €),
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where I° = Q° and I' = Q! are given by (30) and (31). The Hamiltonian equations
now look as follows:

(33) j—; = Ix (cwt, K, ,2),
K
%(—P— =-I; (ewt,K,p,€).
Introducing et = T, these equations become
dT
34 _—
( ) d(p EIK (wT,K,cp,E),
dK
= K
a7 elr (wT, K, p,¢)
and belong to the Hamiltonian function
el (WT, K, p,€).

We look for a symplectic transformation % of the form

) r = T+u(T K),
(35) Y: o h = K+9(T,K)

which is, in particular, independent of the (time) variable ¢ and transforms the Hamil-
tonian function £I into the following form:

(36) e{Ioy~ '} =¢ {®°(h,&) + & ' (wr, h,p,€)},

where the dominant term ®° is independent of 7. To define this transformation we
first define the leading term ®° by taking the inverse function of K — I°(wT, K),
then averaging it over the torus TV and taking the inverse again. Observe that
I% > 0 in the view of (31) provided that ¢ is sufficiently small. Therefore we can
solve I°(¢, K) = h for K and find a function KO(¢, k) satisfying

37) I°(¢, K°(€, k) = h,

where K? is periodic in £ e T". Next, define the mean value over the torus by

(38) (K%)(h) = / K€, h)dt.
TN

Since K9 = (I%)~! > 0, the function [K°] has an inverse $° which thus satisfies
(39) [K?) o ®°(h) = h.

In our notation we have neglected the dependence on e. Clearly, ®) > 0. This
finishes the definition of #°. Using this ®°, we shall next define the required symplectic
transformation 4 in (35) implicitly by means of a generating function %(wT, k), which
is quasiperiodic in T,

T + Zp(wT, ),

h + Zp(wT, h).

s‘
I

(40) Y

B
I
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In order to achieve our aim (36) we have to solve the following equation for X:
(41) T, h+ Br(wT,h)) = &°(h),

where the dependence on the parameter ¢ is again neglected. In view of (37) equation
(41) is equivalent to

h+ Sr(WT, k) = K%wT, ®°(h)).
Therefore, the function £(£, k) solves the following partial differential equation on T

having the constant coefficients (wy,...,wn) = w:
al 3

(42) > w = Eh = K°(¢,2°(h)) — h.
i=1 I

Since, by our assumption, the frequencies w satisfy the Diophantine conditions (5) and,
by construction, the mean value over the torus of the right-hand side of (42) vanishes in
view of (39), there is a unique solution (¢, k) periodic in £ and having vanishing mean
value [Z](h) = 0. Because of the well-known small divisor phenomenon, however, this
solution loses derivatives, so that

(43) T € CFT (TN x D)

if the right-hand side is in C*, where the parameter T in (44) is the same as in the
Diophantine condition (5). This is well known and we refer to [10] and [16] for a
proof. In view of

1+ Srh (WT,h) = K2 (WT, ®°(h)) ®)(R)

_ %
=5
the relation (40) indeed defines a symplectic transformation ¢ of the form (35) . It
is of class C*¥~7—1; the extra loss of smoothness is a result of the differentiation in
(40). Moreover, by the well-known properties of quasiperiodic functions proved in the
book by Siegel and Moser on celestial mechanics [17, §36], one readily verifies that the
functions u and v in the transformation ¢ are quasiperiodic in T still with the same
frequencies w. The same conclusion follows for the functions representing the inverse
transformation of 1.
Recalling that T = et, we now replace 7 by e7 and arrive, in view of the Hamil-
tonian equations corresponding to the function (36), at the equations

> 0,

dr

44 = =

( ) dcp q>h (‘UET, h7 (Pve)a
% =—&, (wer, h,p,¢).

The Hamiltonian function
(45) ® (ewr, h, p,€) = ®°(h,e) + e® (ewr, h, 0,€)

is quasiperiodic in 7 with frequencies ew. Moreover, ®(¢, k, v, £) belongs to C*~1=7 (TN x
D x S! x R) and, by construction,

(46) 80 (h,e) = ch” +O(e)

for a constant ¢ > 0.
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3.5. Back to the angle and action variables. Proceeding as in step (3.3),
we next choose the variables ¢, I, and T as the new position, momentum, and time
variables. These variables then satisfy the Hamiltonian equations whose Hamiltonian
function is the inverse function of h — ®(ewT, h, @, £) denoted by h(p, I,ewr, €) and
thus satisfying

® (cwr, h(p, I,ewt,€)) = I.

Therefore, the Hamiltonian equations become, on the extended phase space (p,1,7) €
S xR xR,

de
== hr (@, I, ewr,€),

ar _

dr —

The Hamiltonian function & is of class C*~"~!, depends quasiperiodically on the time
7, and is of the form

—h; (p,I, ewT,€).

(47) h (g, I, ewr,e) = h° (I,€) +eh! (p,I,ewT,€),
where RO is the inverse function of ®°, which thus satisfies
RO (I,e) = cI? + O(e®)
with constants 8 = 222, o > 0, and ¢ > 0.
3.6. Transformation into a system near an integrable one. In order to
remove the dependence on ¢ in the O(¢)-terms of the Hamiltonian (46) we seek a

time-dependent symplectic transformation ¥ : (¢,I) — (z,y) between two annuli
given by means of a generating function § = § (¢,y,cw, €), implicitly, via

I = y+¢eS, ()
48 : $
48) v T = @+eSy(py)

Inserting (48) into (47) and expanding in ¢ leads to

R® (y+€8S,) + eh! (x+¢€Sy ,y+eSy)
=h (y) + eh? (¥)S, + eh! (z,y) + O (e%).

To kill the angle dependence in the O (¢) term above we require
) (y) Sy + R (z,y,ewr) = [h] (y,ewT)
with the mean value over S! defined by

1
(49) (kY] (y, ewr) = / B (2, g, cwr)ds,
0
and we find

S (p,y,ewr) = E(IT%E /{[hl] — hl}dz,
0
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which is periodic in ¢ and quasiperiodic in 7. For the transformed Hamiltonian
function H (z,y,ewt,e) = hot + &S, we therefore conclude

H (l‘, Y, EWT, E) = ho (y’ 6) -+ E[hll (y, EWT, E)
(50) +e2h? (z,y,ewT, €).

By repeating the same procedure but replacing S by €28, of course with a different
function S, the Hamiltonian (50) is transformed into a new Hamiltonian of the form

H (z,y,ewr,e) = h® (y,&) + e[h!] (v, cwT, €)
(51) + e2[h?] (y,ewT, ) + €3h3 (z,y,ewT, €).

Now, in order to remove the time dependence from the dominant part in (51) consist-
ing of the first three terms, one again carries out step (3.3), then step (3.4), and then
step (3.5) and finally arrives at the following time-dependent Hamiltonian function
H (z,y,ewt,€), which in action and angle variables (z,y) € S! x D for some open
and bounded interval D C RT, is given by

(52) H (z,y,ewt,e) = Hy (y,¢€) + 3H; (z,y,ewt,¢),
with
Ho (y,€) = ¥’ + O (¢%)

for positive constants ¢, a, and 8 = 222, The function H belongs to ck—2m—4
and, moreover, is quasiperiodic in time ¢ with the frequencies ew. On the domain
(z,y,t) € S x D x R the system described by (52) turns out to be sufficiently near
the integrable system, which is described by the Hamiltonian Hy (y,¢) provided ¢ is

small. This is the content of the next and last step in the proof of Theorem 1.

3.7. Existence of an invariant cylinder, proof of Theorems 1 and 2. We
consider the Hamiltonian system (52) in S! x D, where D is a bounded interval of
the positive real axis, H is periodic in z, and £ = (&;1,...,&N):

(53) H (z,y,&,€) = Hy (y,€) + €3 Hy (z,9,€,€).

We are looking for quasiperiodic solutions having the frequencies (a,ew) € RV,
where w are the prescribed frequencies of Theorem 1. In more geometric terms we
look for a differentiable mapping

(54) w:THY - 81 x D,

w (6,€) = (u(6,€),v (8,£)), where u (8,§) — 6 and v (8, §) are periodic functions in
@ and £, which maps the constant vector field V on T+ given by

o = e

(55) V: E = ew

into the given Hamiltonian vector field belonging to (53), thus satisfying

(56) Dy w=dw (E‘Z) = JVH (w (6,€),£)
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for all (8,€) € T**N. Here V stands for the gradient with respect to the variables
(z,y) and

9 AR
Dv=a% +£;wj-@,

57 s=( °!
(57) _<—1 0)'

From (56) it then follows that a solution ((t) ,£(t)) = (at, ewt) of V in (55) is
mapped into the quasiperiodic solution z (t) = w (at, ewt) of the Hamiltonian system

(58) 2 (t) = JVH (z (t),ewt,€).
One concludes, in particular, that the cylinder
(59) w:S'xR—S'xDxR,

defined by w (8,t) = (w (8, ewt), t), is tangential to (JVH (z,y,ewt), 1), the Hamil-
tonian vector field in the phase space S! x D x R. The solutions on this cylinder are,
moreover, quasiperiodic. The required map w is, in view of (56), a solution of the
nonlinear partial differential equation

(60) Dyw=JVH (w,§,¢).

In the special case of the integrable system defined by Hp (y,€), which does not
depend on the torus variables (8,&) € T+, the solutions w of (60) are simply the
injection mappings

(61) w: T = §'x D, w(8,§)= (6,y),
where y is determined by the vector field V = (a,cw) via

OH,
62 = —(y,¢).
(62) =5, )
If ¢ > 0 and small, then the system H is a perturbation of this integrable system and
we shall apply a well-known existence statement of Moser [18] in order to guarantee
solutions w of (60) nearby.
First we observe that, by construction, the function H in (52) satisfies

8%Hy

(63) C<%z

(y,e) <C™', yeD
for a positive constant C > 0, which is independent of & for small €. This is the twist
condition. Consequently, if the prescribed frequencies w € RY satisfy the Diophantine

conditions (5) of the theorem, then we find, for every given € > 0, a point y € D such
that a = (0Ho/0y) (y, ) satisfies

(64) la-k+(ew, i) | 2 ey (Il +13)77
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for all (k,7) € Z'*V\{0} with the constants v >0 and 7 > N as in (5). Indeed, one
readily verifies, using 7 > N, that in every finite interval I the complement of those
real numbers « in I which fail the estimates (64) are a set of Lebesgue measure O (g).
Secondly, the Hamiltonian function H is sufficiently smooth: H € C! for | > 27 +2.
Indeed, from step (3.6) we have, by construction, H € C¥~?"~* and, by assumption,
k > 47 + 6. Thirdly, the perturbation is sufficiently small in the sense that

2
(65) (;1;) I - Hollo: = S 1Hlos =0 (o).

In view of (63), (64), and (65) we can apply Moser’s theorem in [18] together with its
improvements from Salamon in [20] and Salamon and Zehnder in [16], which remove
the analycity requirement for the unperturbed system. We conclude that, for 0 <& <
e* small and a = (0H/dy) (v,¢) satisfying (64), there exists a solution w = we of
(60). Moreover, this solution we = (u.,v,) satisfies

llue (6,€) — blicr = O (e),
(66) l[ve (8,6) —yller = O (o),

so that w, is indeed close to the map w = wg in (61) for the integrable system. It
belongs to the same o.

Summarizing, for every £ > 0 sufficiently small we have constructed an invariant
cylinder (59). Going back to the original coordinates we conclude, in view of the
scaling in step 1, that to every initial condition (z (0),% (0)) € R? there is an invari-
ant cylinder as described in the introduction containing the corresponding solution
(z (t),2 (t)) of equation (1) in its interior, so that sup{ z(t)? + &(t)*>,t € R} < oo.
This finishes the proof of Theorem 1.

We remark that, in order to apply the above small denominator techniques to
our problem at hand, one simply extends the Hamiltonian system by considering the
function

H (z,6,y,m) = (w,n) + H (z,9,6,€)

on the extended phase space THN x RN with its standard symplectic structure.
The integrable part of H is then given by

Ho (y,m,€) = g{w,n) + Ho (y,€).

The distinguished invariant torus of this integrable system, defined by T+ x {y,n}
for a = (0Hy/0y) (y,¢) and nn = 0, which has the frequencies (a,éew), is then contin-
ued under the perturbation. For the existence proof of this continuation one simply
applies the standard transformation technique, restricting, however, the symplectic
transformations used to the subgroup of those transformations leaving the £ variables
fixed.

4. Proof of Theorem 3 (on general potentials). In this section we shall
sketch the proof of Theorem 3. The many tedious technical details are the same
as in [15] and the proof of Theorem 1 and will be omitted. We first carry out the
formal steps which put # + Vi(z,wt) = 0 into a suitable normal form in the region
z2 + %2> C in R? for C > 0 large. Afterwards we follow up with the estimates.
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4.1. The formal normal form. In contrast to the polynomial case of Theorem
1 we do not rescale until later.

Step 1. We first introduce the action and angle variables (z,%,t) — (8,1,t) by
freezing a value ¢ and assigning to (z,y,t) the triple (6,1I,t) as follows:

0 =5 (z,I,wt),
(67) y=35; (z,1,wt),

where
x

S (z,I,wt) = /yd:c
0

is the integral taken along the level curve 51, y? + V (z,wt) = const, which encloses
the area I in the (z,y)-plane. The resulting Hamiltonian in the (@, I,t) variables is
then

(68) H (0,I,wt) = Hy (I,wt) + H; (0,1,wt)
with
H =5 = w-iS(let)
1 = t = a{. 1 4y .

Step 2. Now, proceeding as in (3.3) we choose ¢, H,0 and I = I (wt, H,6) as
the new position, momentum, time, and Hamiltonian function, respectively. Here
I (wt,H,$) is the inverse function of I — H (,1,wt). Defining I (wt, H) as the
inverse of I — Hy (I,wt) we rewrite the Hamiltonian describing the system in the
form

(69) I (wt,H,0) = I (wt,H) + I (wt, H,8),

thus defining I; with @ playing the role of the time.
Step 3. Removing the t-dependence in the “leading” term Hy, following §3.4 we
arrive at the equivalent Hamiltonian system defined by

(70) J(wr,h,0) = Jo (h) + J1 (wT,h,8).

Step 4. Proceeding as in §3.5, we go back to the variables (6, J,7) as the new
position, momentum, and time and arrive at the new system with the Hamiltonian

(71) h(8,J,wr) = ho (J) + hy (9, J,wt),

where h is the inverse function of A — J (w, h,8) and hy is the inverse of h — Jy (h).
Step 5. In order to work on a bounded interval for the action variable we rescale
(8,J) into (z,y) by setting

(72) =140 y=e
where £ > 0 is small and y varies in a bounded interval D ¢ R*. The new variables
satisfy the Hamiltonian system corresponding to the Hamiltonian function

(73) eh(z,y,wr) = eho (g) +eh (a:,g,wr).
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Rescaling the time by
-t
74 = —
™ T el

and introducing the abbreviation T (€) = ehg (1), we set

(75) Q=Q() =

T (e)
and arrive at the new Hamiltonian system given by
(76) h(z,y,0t, &) = o (y,€) + €° Ry (z,y,Qt,€)

with the functions kg and iil defined by

ho (y,€) = ho (%) ,

1
ho()

; = y
hy (z,y,Qt,€) = z, E,Qt) .

1
e (
fho (1)
The constant 3 > 0 will be chosen later such that h}, together with all its finitely
many derivatives, is bounded independently of € > 0.

Step 6. After K further symplectic transformations as in §3.6, we find the fol-
lowing normal form for the Hamiltonian function on an annulus A with coordinates
z and y:

(77) H (x7vat75) = HO (y,E) + EKﬂ -HK (:E’y)Qt’E)v

where H is periodic in z and quasiperiodic in ¢ with the frequencies Q = Q(e)as
defined in (75). All the transformations result in the loss of 27 +3 + K derivatives.

4.2. Estimates. In order to apply the theorems of existence of quasiperiodic
solutions as in §3.7 for the flow of the Hamiltonian system given by H in (77), we
need the following conditions (i)-(iii) to be satisfied:

(i) There exist constants 0 < C < C independent of ¢ > 0 such that

2
(78) < (%) Ho (w.6) < Cs

for all y € D, where D is a bounded interval in R*.
(ii) For every £ > O there is a y € D such that a = ‘a% Hy (y,¢) satisfies the
Diophantine conditions

(79) lak + (@5 | 2v1Q] (K + 15D77
for all (k,j) € Z x ZV\ {0}, where @ = Q (¢) is given by (75).

(iii) The perturbation satisfies

2
(80) (;!-150 Ie¥PHkll oy = O (€7)
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for some { > 27 + 2 and all £ > 0 with a constant ¢ > 0.

The following two propositions will allow the verification of (78)—(80). The first
proposition is a restatement of Theorems 3 and 4 in [15, p. 47].

PROPOSITION 1. If the potential V(z,£) satisfies the assumptions of Theorem 3
with |a| + k| < d then the Hamiltonian function (68) satisfies for I large the following
estimates: There are positive constants Ci o and 6 = §(u,b,d) such that

(81) |0 8 H(8,1,6)| < Cro IT*7° Ho(1,€), o+ k| <d—1.
Moreover, the function Ip(€, H) in (69) satisfies for large H,

(82) |68 8% Io(§, H)| < Cka H™* I(&§, H), o]+ k| <d-1
and for 0 <k <2,

(83) H™*Iy(¢, H) < C |85 Io(¢, H))

for a constant C > 0.

The next proposition is a restatement of Theorem 5.1 in [15].

PROPOSITION 2. If estimates (81)—(83) hold true then the Hamiltonian function
(71) denoted by J(&,h,0) = Jo(h) + Ji1(&,h,0) satisfies the following estimates for
h large: There are positive constants C, Ci, Cr, o, 0,01, and o, such that

1., 18 1o,
(84) S s |% Jo(h)| and k< Jo(h),
1., a\*
(85) o b Jo(h) < 3 Jo(h)| for 0< k<2,
a k
(86) l(;ﬁ) Jo(h)| < Cx K™% |Jo(R)], k] <d -2,
(87) 188 OF J1(6,h,8)| € Cra hF Jo(R)'™7, o+ |k| < d—2.

By using the techniques developed in [15], one can follow these estimates through
all our coordiante transformations in order to verify (78) and (80). In particular,
estimates (84)-(87) imply the existence of constants 8 = B(b,u,d) and po = po(b)
such that

|Hkl|ca-2--3-x = O(1).

Furthermore, there exists a@ = a(b) > 0 such that

eho (%) = 0.

To verify (80) we combine the last two estimates

2
1
(m) ”&‘KHK”Cd-zf-s-K = O(EKﬁ_za),
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and it remains to show that KB(b, u,d) —2a >0 and d — 27 —3 — K > 27 + 2 hold
for some K > 0 or, equivalently,

5 (b)
B(b, 1, d)

For such K to exist it suffices to verify that

<K<d—47—5.

5 20.(b)
B(b, p, d)

First, 4(b,0,d) = 8(b) > 0 is d-independent, according to the arguments in [15], and
B(b, 1, d) can be chosen as continuous in p for 4 > 0. Thus, choosing

d = 4'r+7+2$b)

B(b)

guarantees that (88) holds for all p € [0, uo(b)], where o(b) > 0 can be estimated
explicitly. With this choice of d there exists K with which the smallness condition
(80) is satisfied. This finishes the sketch of the proof of Theorem 3.

(88) d— 41— >1 and B(b,u,d) > 0.

5. Proof of Theorem 4 (unbounded solutions). The idea is to create p(t),
giving a particular solution y(t) of (11) a “helping kick” to the right each time the
solution passes through the interval —1 < z < 1 from —1 to +1, and make p(t) =0
at all other times. With such a p(t) the energy along the solution will increase during
each passage from —1 to +1 while remaining constant between consecutive passages.
If the “kicks” do not weaken too much with the number of passages, the errors will
grow without bound. The precise construction is as follows: We first consider an
auxiliary nonconservative system

(89) j+y°=fv.9)

for a smooth function f € C*(R?) defined by

(90) Fw9) = hiw) - 22,
where r € N is as it was in the statement of the theorem and h and g € C*(R)
satisfy

=0 if |y|>1,
h(y){>0 if |yl <1,

=0 if §<0,
(91) g ¢ >0 if O0<y<l,
=1 if g>1

Now, if y(t) is a fixed unbounded solution of (89), we can define p (t) = f (y (¢),¥ )
and consider equation (11) with this forcing term p. The function y (¢) then solves
both the conservative equation (11) and the nonconservative equation (89). It turns
out that all nontrivial solutions of the latter are unbounded.
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and it remains to show that K8(b,u,d) —2a > 0and d — 2r —3 — K > 27+ 2 hold
for some K > 0 or, equivalently,

a(b)
Qe <« K<d—41—5.
B(b, 1, d) 7

For such K to exist it suffices to verify that

20:(b)
B(b, p, d)

First, 8(b,0,d) = B(b) > 0 is d-independent, according to the arguments in (15], and
B(b, i, d) can be chosen as continuous in g for u > 0. Thus, choosing

(88) d-4r7 -5 >1 and g(b,u,d)>0.

72020
d =4 +7+2ﬂ(b)

guarantees that (88) holds for all u € [0, uo(b)], where uo(b) > 0 can be estimated
explicitly. With this choice of d there exists K with which the smallness condition
(80) is satisfied. This finishes the sketch of the proof of Theorem 3.

5. Proof of Theorem 4 (unbounded solutions). The idea is to create p(t),
giving a particular solution y(t) of (11) a “helping kick” to the right each time the
solution passes through the interval —1 < z < 1 from —1 to +1, and make p(t) =0
at all other times. With such a p(t) the energy along the solution will increase during
each passage from —1 to +1 while remaining constant between consecutive passages.
If the “kicks” do not weaken too much with the number of passages, the errors will
grow without bound. The precise construction is as follows: We first consider an
auxiliary nonconservative system

(89) j+y° = f(y.9)
for a smooth function f € C*(R?) defined by

(90) F(,9) = h(z)- géi’),

where r € N is as it was in the statement of the theorem and h and g € C*(R)
satisfy

=0 if [y =21,
hW){ >0 if |y <1,

=0 if §<0,
(91) g ¢ >0 if 0<y<l,
=1 if y>1

Now, if y(t) is a fixed unbounded solution of (89), we can define p (t) = f (y (¢),¥ ()

and consider equation (11) with this forcing term p. The function y (t) then solves
both the conservative equation (11) and the nonconservative equation (89). It turns
out that all nontrivial solutions of the latter are unbounded.
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v

Fic. 5.1.
The energy
1, ., 1 4
(92) B (0) =59 0+ 7u (1)
along a given solution y (¢) of (89) satisfies
d . .

which is > 0 if § > 0 and |y| < 1 and 0 otherwise.

To be specific, in the following we consider the solution y(t) with initial values
y (0) = g (0) = 1. Referring to Fig. 5.1, the motion of (y,%) in the R2-plane follows
the energy curve in R? given by 172 + y* = 2 in the clockwise direction until the
point (-1,1) is reached at some time ¢, > ty = 0. At some later moment t5 > t; the
point (y,y) will cross the right boundary {y = 1,7 > 1} of the strip. Indeed, this
follows by comparison with the equation §j + y* = 0 from the fact that f(y,7) > 0in
the strip. Furthermore, E (¢2) > E (t1) by (93), so that the point will start moving
along a larger energy curve after having crossed the strip.

Denoting the sequence of consecutive crossings of the vertical boundaries {y =
+1,§ >0} by 0 =1ty < #; <tz < ---, and the sequence of corresponding energy values
between consecutive crossings by

E,=E (t)7 ton £t < tonya,
n=20,1,2,..., we claim that

(94) lim E, = lim E (t) = cc.

n-—oc t—oo

Indeed, integration of (93) gives

t2n42
Ens1 — B = / 9f (9,9)dt

tan+1

tong2 1 1 1
(95) — [Thw = [ nw)
tant -

Yy 1 Yy
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The inequalities
E, < E(t) < Ep41 for tony1 <t < tonyo
result, in view of |y (t)] <1 and E, > 3, in

(96) VEn <9 (t) < V2y/Eny1 for tangr <t < tonto
From (95) and (96) we conclude

a b
(97) _7/—2_<E"+1_E"<_r/2-’ n=0,12,...
n-+1 lgn

for two constants 0 < @ < b. Consequently, E, is a strictly monotone increasing
sequence; moreover, lim E,, = co. Indeed, if lim E,, = Es, < oo then taking the limit
in (97) leads to the contradiction 0 < a/ ET7/? = 0. We have proved claim (94) and
conclude, in view of (92), that the solution y (t) of (89) is unbounded.

In order to prove claim (10) in Theorem 4 for p (t) = f (y (t), ¥ (t)), we note first

that, for top41 <t < ton42, we have y (t) > 0 and thus

p(t)=h )y,

while p (t) = 0 otherwise. Since lim E,, = co, estimate (96) implies lim;_o p (t) = 0.
Similarly, differentiating p and observing that y (t) satisfies equation (89), one
readily verifies the estimate

(98) IDp ()] < CW)—rmg, i tones <€ < tans2,
v ()7

while D7p (t) = 0 otherwise, so that lim¢—oo D7p (t) = 0if 1 < j < 7 — 1. Here, the
constant C (h) depends only on h and its derivatives and, moreover, C (eh) < eCy (h)
for € small. Replacing h (y) by h (y), we get the required estimate (10) for the forcing
p(t).

Finally, we prove estimates (12) and (13). Since, by (94) and (97), ¢1 < En41/En <
¢ for two positive constants ¢; < ¢y, we have

a b
(99) —73 <Ent1 - En < —5

for two constants 0 < a < b, which are different from the previous constants. To
estimate F, we define the continuous function 7 (t) by linearly interpolating Ey:

n{t)= (t-n)Epp1+ (1—t+n)E,

if n <t <n+1,sothat E, = n (n). Thus 5 (t) is a strictly monotone increasing
function whose right derivative D, satisfies, in view of (99),

a < b
n ()2~ n (t)/?

for all t > 0; this is the differential inequality which interpolates (99). Comparison
with the solutions &, (¢) and & (¢) of the two equations

(100) Den(t) <

é=—a— with a = @ and o = b,
ET/Q
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with initial conditions &, (0) = n (0) = & (0), leads to & (t) < 7 (t) < & () for
t > 0. Consequently, there are constants 0 < A < B such that

(101) AnT7 < E, < B nT
for n=10,1,2,.... In order to relate n with ¢, we note that
(102) T (En+1) <topyo —ton < T (En),

where T (E) denotes the period of the solutions of & + 3 = 0 with energy E =
132 + 1z%. A simple calculation gives T (E) = rE~!/* for some constant 7 > 0.
Using this in (102}, we conclude from (101) that

a b
(103) — < topga —t2n < —

n 2r+4 n 2r+4

for two constants 0 < a < b, which are different from the ones in previous formulas.
Adding up inequalities (103), we obtain the estimate

2r+3 2r+3
(104) cnTH < t, < C n¥H

for two constants 0 < ¢ < C. Recalling the definition of E (t), we conclude from (101)
and (104) that

(105) atFE < E(t) <btFm, t>1
for two constants 0 < a < b. Finally, in view of (96) and (98) we now conclude

. 1 1
|DJP (t)] <a r—j <23 (r—3)
E @ $ 2353

as claimed in the theorem. This finishes the proof of Theorem 4.
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