Benford's Law and Accelerated Growth

Benford's law, discovered by Simon Newcomb [2], is an empirical observation that in many sets of numbers arising from real-life data, the leading digit of a number is more likely to be 1 than 2 , which in turn is more likely than 3 , and so on. Figure 1 shows a count of leading digits from the 107 NASDAQ-100 prices, ${ }^{1}$ sampled around noon on June 14, 2017. Although the monotonicity is clearly violated, there is a bias in favor of low leading digits.
The following example illustrates a mathematically rigorous deterministic (as opposed to probabilistic) counterpart of Benford's law. Consider a geometric sequence, for instance
$1,2,4,8,16,32,64,128,256, \ldots$
and extract from it the sequence of leading digits:
$1,2,4,8,1,3,6,1,2, \ldots$.
$1 \mathrm{http}: / / \mathrm{www.cnb} c . c o m / n a s d a q-100 /$

Figure 1. A snapshot of the distribution of leading digits in NASDAQ-100 stock prices.

It turns out that the frequency p_{k} of digit k is well defined and given by

$$
\begin{equation*}
p_{k}=\lg (k+1)-\lg k, \tag{1}
\end{equation*}
$$

see [1]. In particular, the frequency decreases with k :
$p_{1}=\lg \frac{2}{1}>\lg \frac{3}{2}>\ldots>\lg \frac{10}{9}=p_{9}$. (2)
In light of this example, if the price of a stock undergoes an exponential-like growth in a loose analogy with the \qquad
\qquad
MATHEMATICA CURIOSITIES
By Mark Levi

\bullet		\longrightarrow			e^{t}				
1	2	3	4	5	6	7	8	9	10
10	20	30	40	50	60	70	80	90	100
100	200	300	400	500	600	700	800	900	1000

clear: since e^{t} accelerates, it passes the higher-digit segments faster, and thus is less likely to be found there.

Figure 2 makes it easy to compute the probability, i.e., the proportion of time, of observing the leading digit k. To that end, we find the time spent having the leading digit k while traversing the j th row in Figure 2:
$\ln \left[(k+1) 10^{j}\right]-\ln \left[k 10^{j}\right]=\ln \frac{k+1}{k}$.
We then divide it by the time of traversal $\ln \left[10 \cdot 10^{j}\right]-\ln 10^{j}=\ln 10 ;$ both times are independent of j, and thus the proportion of time spent with the leading digit k over time $[0, T]$ approaches

$$
\frac{\ln \frac{k+1}{k}}{\ln 10}=\lg \frac{k+1}{k},
$$

as $T \rightarrow \infty$, the same as the discrete

The figures in this article were provided by the author.

References

[1] Arnold, V.I. (1983). Geometrical Methods in the Theory of Ordinary Differential Equations. New York, NY: Springer-Verlag
[2] Newcomb, S. (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics, 4(1), 39-40.

Mark Levi (levi@math.psu.edu) is a professor of mathematics at the Pennsylvania State University.
result (1)
教

Figure 2 shows the x-axis cut into segments $10^{j}, 10^{j+1}$) and stacked on top of each other, all of them scaled (linearly) to the same length. This cutting and scaling allows us to see the leading digit of e^{t} at a glance. Now the reason for Benford's law becomes

