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While putting dishes in the sink, I tried 
to balance a knife on the edge of a 

pot and noticed an interesting effect: the 
knife balanced, and stably so, if the blade 
touched the water (see Figure 1). But noth-
ing worked when the pot was empty; the 
blade was too light.

The Mechanism
Before looking at the photo, one might 

think that the blade’s buoyancy would make 
the balancing act even more impossible, thus 
giving the handle further advantage. So what 
is responsible for the balance and stability? 
In Figure 1, the blade lifts some water up 
above the level of the remaining surface; this 
creates suction that pulls the blade down. 
The lifted water is then added to the blade’s 
weight, and the equilibrium is automatically 
stable because the restoring suctional torque 
is an increasing function of the outward tilt 
(up to a point). Surface tension also pulls 
the blade down, but this force is negligible. 
However, surface tension’s role is indis-
pensable in another way — namely in keep-
ing air from entering the space underneath 
the blade. To test this role, I added dish soap 
to the water to see if the decreased tension 
would cause the knife to tip out. At first 
nothing happened, but I realized that was 
because the soap simply dropped to the bot-
tom of the pot. When I mixed the soap with 
some water and then put it in, the knife then 
tipped out. Soap can decrease water’s sur-
face tension by more than half, down from 
approximately 72 dyn/cm.

Balancing a Knife, Euler’s Elastica, 
and the Mathematical Pendulum

where  The 
exact same equation 
describes Euler’s 
elastica: equilibrium 
shapes of elastic rods, 
except that c  can also 
be negative.

The Pendulum
By differentiating (2) 
with respect to the 
arclength s  along 
the curve, and recalling that κ θ= ′ and 
y ′= sinq  (here, ′=d ds/ ), we get

         q q′′=c sin .

This is precisely the equation of the pen-
dulum, with q=0  corre-
sponding to the upside-down 
(unstable) equilibrium. In 
other words, if we travel along 
the curve in Figure 2 with unit 
speed, the tangent’s direction 
swings exactly as if it were 

a pendulum (with gravity pointing to the 
left in Figure 2). The curve in Figure 2 
satisfies q® 0  as s→−∞ and θ π®2  as 
s→+∞. This corresponds to heteroclinic 
solution of the pendulum equation, with 
the pendulum approaching the unstable 
equilibrium in both future and past.

Derivation of (1)
The force F  is the weight of the lift-

ed water of volume 
»AH ,  where H  is 
the maximal possible 
height, so that
             
      F gAH»r .    (3)
  
We must find the maxi-
mal possible H  for 
which the surface ten-
sion can still keep the 
air from under the plate.

According to Figure 
3, the equilibrium con-
dition is

  2sL p HL= ⋅average .   (4)

Substituting p gHaverage=
1

2
r  into (4) 

yields (after simple algebra)

        
H

g
=

4σ
ρ
.

Substituting this value into (3) gives the 
lifting force (1). This is the theoretical 
maximum; the true value may be less 
because the angle q  near the top need not 
be p,  as it is in Figure 3.

The figures in this article were provided 
by the author.
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A Surprisingly Large Force
To estimate the magnitude of the force 

required to break the knife’s contact with 
the water, let us consider a slightly simpler 
case: a horizonal plate of area A  touching 
the water’s surface (our knife is slightly 
tilted, hence the difference). The force 
required to break contact with the water 
turns out to be approximately

    F A g= 2 ρ σ ,    (1)

where r is the water’s density and s is the 
surface tension; I derive this formula at the 
end. The force is surprisingly large: for the 
area A m=1 2,  it is about 5 kg, i.e., roughly 
10 pounds. In contrast, the surface tension 
results in the force f  approximately propor-
tional to the plate’s perimeter P:

              f P»s ,

which is a much smaller quan-
tity than F  for the areas that 
are the size of our knife.

Euler’s Elastica
Consider the shape of the water’s sur-

face along the straight edge of the knife in 
Figure 1, assuming that this edge is also 
parallel to the surface. Figure 2 depicts 
the two-dimensional section of this shape, 
which is governed  by  the equilibrium con-
dition: Curvature k is caused by the pres-
sure difference p  between the two sides of 

the water’s surface1 
and is inverse pro-
portional to the sur-
face tension κ σ=p / .  
Since the hydrostatic 
p gy=r  (the excess 
of the air pressure 
over the water pres-
sure), we have

      k=cy,   (2)

1 Actually, one 
could call it the air’s 
surface with almost 
equal justification.
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Figure 1. A knife balances stably on the edge of a full pot if the 
blade touches the water.

Figure 2. The shape of the water’s surface along the straight edge 
is an Euler’s elastica.

Figure 3. The surface tension 2sL  must be able to compensate 
the suction whose average pressure between y=0 and y H=  is 

p gHaverage =
1

2
r ,  thus producing the force p HLaverage .


