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Abstract. In this paper, we point out a close relationship between two standard classical
problems in mechanics which have coexisted in textbooks for many decades: (1) the
pendulum whose suspension point executes fast periodic motion along-a given curve; and
(2) the skate (known also as the Prytz planimeter, or the ‘bicycle’). More generally, we
deal with dynamical systems subjected to rapidly oscillating forcing. Examples include:
charged particles in rapidly oscillating electromagnetic fields, in particular the Paul trap;
particles in an acoustic wave; a bead sliding on a rapidly vibrating hoop. It turns out
that the averaged systems of such kind are approximated by a non-holonomic system.
The holonomy turns out to have a transparent geometrical or physical interpretation.
For the example of a particle in an acoustic wave the holonomy is directly proportional
to the speed of the vibration-induced drift.

1. The Pryiz planimeter _
In this paper, we describe a close connection between two different well-known mechanical
systems: the pendulum with vibrating suspension and the so-called Prytz planimeter, also
known as the Chaplygin skate. We begin with a brief description of the planimeter.
The Prytz planimeter is a mechanical device, invented by Holger Prytz in about 1875, to
measure areas, as mentioned in [7] (see also references therein, for example {16] and [14]).
The Prytz planimeter is sketched in Figure 1. The hatchet-shaped slider end is placed
an paper, 50 that it rests on the slider point B, while the tracer point A is made to trace
out the boundary of a domain D, returning to its point of origin. Throughout the motion
the slider B moves without sideslip: the velocity of B is aligned with the rod. (The same
effect would be achieved by replacing the hatchet by a wheel). The angle between the new
and the old directions of AB gives the approximate area of D according to Theorem 1.
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FIGURE 1. Schematics of the Prytz planimeter.

Equations of motion. Let 0 be the: angle formed by the rod AB with the positive x-axis,
and let z(¢) == z(t + 1) be a parametrization of the closed path K traced out by the tracer A.
The no-slip constraint of the velocity of the slider B amounts to

) = —z A e'? (1)

where A denotes the scalar cross product. Indeed, the no-slip constraint gives the
alignment of the velocity of B and the rod AB: (d/d1)(z + €%} A ¢ = 0. Hence
zAe? +6(ie®) A = 0. Using (ie”) A ¢ = —1 we obtain equation (1). The
latter, in the notation e = €', is equivalent to

&= —i(ZAee, )
as one easily checks.

The non-integrable distribution. The position of the system is fully determined by
(x, y,8), where, using the complex notation, (x, y} = x + iy = 2. For completeness,
we recall the well-known fact that the no-sideslip constraint of the skate is non-integrable,
i.e. does not amount to a constraint of a particle in configuration space to a submanifold.
Indeed, the no-sideslip constraint on the slider is given by the condition

®w=d0 +sinfdx ~cosfdy =0, 3)

as follows from equation (1). Since dw A w = dx A dy A df 3 0, the field of planes
(3) is non-integrable, by a theorem of Frobenius, i.e. possesses no tangent surface. Thus
the holonomy is non-zero: if z describes a closed path, (z, 8) need not. When the curve is
‘small’, the asymptotic expression for the change in 6 has a nice geometrical interpretation.
To make this precise, let the path z(r) be a homothetic rescaling of a fixed curve Z(7):

z(t) = eZ(2),
so that equation (1) takes form
6 =—2ZAe'® =eZ. (—ie'), @
with - denoting the standard dot product. We will actually look at the more general system
6 = eZ(r) - F(6), )

where both Z : R — R? and F : R ~ R? are smooth and periodic, with Z{¢ + 1) = Z(#).
This system inciudes equation (1) as a special case. The following theorem is a slight
generalization of the theorem due to Prytz and others [7].
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THEOREM 1. Let 8 = 8(1) be a solution of (5). Under the conditions stated above,

O(to + 1) — O(10) = e2 Ay + &7 B 1(8, 1) + O(e?), (6)

where |
A,«=Af(9)=f f'fdt, fa,8)=1z-F, (7

0
and :
Brs® ) = [ (377" = (£(1.6) = 10, 00) &) . ®
We introduce, for future reference, one more quantity? associated with the planimeter:
1d .,

C(esr)—iﬁ(f) | f(T,B)-—Z'F. (9)
Geometrical interpretation of A, B and C in the special case of F = —ie'® = (sin#, cos 8).

'y Ay is the area-enclosed by the path of Z(t). Indeed, f' = Z-F = X and
f =Z-F =Y are precisely the coordinates of Z in the (right-handed) orthonormal
frame (F, F). Thus Ay = [y f'f dt = § X dY = area inside Z, as claimedt.

. Bf. f(B, to) = XAy, where x is the distance from the centroid of the domain D
enclosed by the path of Z to the line through Z(#p) in the direction —F(¢g). In other
words, B 1, f(B, Ip) is the torque around the axis through Z(#p) in the direction —F(#g)
of the uniformly distributed force applied to the lamina D, perpendicular to the
lamina. Indeed, f” = — f and (8) with g = f yields

1 . .
Bry= [ (8% = (' = £ 1f)a
=—§(X—X0)de=—ff(X—X0)dXdY=fAf, (1)
D

as claimed.

. C(8, T) is the centrifugal acceleration of the slider and, in particular, C(8, 1) = kv?,
where k = k(f, 1) is the curvature of the slider’s path, while v = v(8, t) is its speed.
Indeed, C(8, t) = fF = (Z(r) - F@))Z() - F'(p)). Now the first term Z(r) - F(9)
in the last product is the angular velocity of the rod and hence of the velocity vector
of the slider point, while the second term i) - F (¢) is the speed of the shlider.
The product of the two gives the centrifugal acceleration, as claimed.

As a side remark, we state a very nice observation due to Foote [7], followed by a short
alternative proof.

THEOREM 2. (Foote) For any closed curve z(t) in the plane, the holonomy map f =
e'% > % of equation (1) is the restriction to the unit circle of a Mobius mapping
z—a
Ti=zt> ——, (11}
—az
where a € C is a functional of z(-).
1 The notation C is suggested by the physical origin of this term as the force of constraint (in an associated

non-holonomic system).
tHere ' = d/d6 and " = d/dt.



1500 M. Levi and W. Weckesser

We give a very short alternative proof of this theorem, based on the observation that
the infinitesimal generator (i.e. the vector field on the circle given by the turning of the
planimeter’s rod) of the holonomy map belongs to the Lie algebra of the Lie group of
Mébius transformations,

Proof. All Mobius transformations of the form (11) leave the unit circle |w| = 1 invariant.
These transformations, restricted to the unit circle, form a Lie group G. To prove the
theorem it suffices to show that the Lie algebra G of G contains all vectorfields of
the form (2). To that end choose a parametrized curve T3 in G given by Ti(w) =
(w — Aa)/(1 — Aaw), l[w| = 1, with an arbitrary a € C. We have Ty = id € G. Consider
the tangent vector at identity

d

— Tw) = —a — w(—aw) = (@aw — a)w = 2ila A ww, (a2

dA' A=0
we used |w| = 1. This vectorfield coincides with (2) if we set ¢ = —%2 Thus
the vectorfields (2) generated by the planimeter lie in the Lie a]gebra of the Mibius
vectorfields, as claimed. - O

This completes our discussion of the necessary background. We now proceed to the
main point of this paper.

2. Holonomy arising in the normal form
In this paper we focus on systems of the form

6+kd=a(t)-F@B), a:R— R F:R- R? (13)

where a(t) - F = a (1) F1(8) + a2 () F»(0) and where k > 0.

The prime example of such a system is the pendulum, i.e. a segment in the plane
with a point mass at-one end and with the other end (the hinge), z(t) = (x(), y(¢)),
undergoing prescribed periodic motion along a planar curve (the ‘twirled’ pendulum).
With the assumption of linear friction in the hinge and with an appropriate rescaling, the
clockwise angle @ of the pendulum is governed by equation (13) where a = %(¢) — g and

= {sin @, —cos @) = —ie*? is the clockwise tangent vector to the circlet:

6+ k6 = a(r) - F(6) = A(?) cos(d — ¢(1)); (14)
here g = (0, —g) is the gravitational acceleration.

Scaling assumptions. We assume throughout that
' t
a(t) = s~'A (E) e, (15)

1 Derivation of the equation is as fellows Let a(#, &) be the acceleration of the suspension point. In the accelerating
frame of the suspension point, the point mass of the pendulum is subject to the d’ Alembert force —Z(t, £). The
tangential component to the wnit circle in the direction —T of increasing & is £ - T(#). The (only) other tangential
forces with nonzero component in the direction —T are the gravitational —g - T and frictional —k8.
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where A € C3(R, R?), where A(t) = A(t + 1) is a fixed function. For the case of the
pendulum this amounts to the assumption of small-amplitude, large-acceleration vibrations
of the pivot. We introduce the non-dimensional velocity V and the position Z via

V(r) =fA(s) ds, V=0, (16)
where V denotes the averége value of V and
Z(t) = f Vis)ds, Z=0. an

Remark 1. The case of the pivot oscillating along a straight line segment, Z = Z(1)g,
where g € R? is constant, is the classical forced pendulumt:

&+ ko = p(t)cosé. (1%

For k = D, the linearization of this is Hill’s equation, which is a fundamental dynamical
system for many applications and which has been studied extensively; see (2, 6, 8, 18, 19]
and references therein. The appearance of a non-holonomic constraint in (18) with k = 0
has been observed in [13]. We show that the relationship extends further in the presence of
dissipation & # 0 and with the pivot following an arbitrary closed path.

2.1. The geometrical normal form. The following main theorem shows that the three
terms A, B and C associated with the Prytz planimeter arise in the normal form of the
inverted pendulum or for the slightly more general case of equation (13).

THEOREM 3. There exists a change of variables § = ¢+eg(p,t, &) with g(p+42m,1,¢) =
glp, t + £,8) = g(p, t, £), such that equation (13} with a(t) = g 1A(t/e) and A = 0, is
transformed into

b +ko =Crip) +c(kAstp) + B, @) + 2R, 1, 6), (19)

where C, A and B are the gquantities associated with the Pryiz planimeter and given by
equations (9), (7) and (8) respectively, and X denotes the time average of X.

The proof of the theorem is given in the Appendix.

It should also be noted that if a and F are analytic, then the system can be brought to
an exponentially small perturbation of an autonomous system. It is not our goal, however,
to consider this higher-order reduction which is well understood in settings more general
than ours (see [5] and [15], among others).

In the special case of the pendulum, F = —ie®, we have:
. Cr(8,7) is the centrifugal acceleration of the slider point of the associated
planimeter;

o  &A = (area enclosed by path of z) /(period of &) = O(g), independent of 8.
We note the difference between the terms B £.4(@ and B 1.7} in eguations (8) and
(19), respectively. The latter thus no longer has the mechanical interpretation.of the torque,
We do not address here the interesting question of determining the algebraic
correspondence between the two systems to ail orders.

1 For a discussion in the physical literature, see, for example, [1,4, 9-11).
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Remark 2. The area term A in the averaged equation (19) is absent in the conservative case
k=0

3. Applications

3.1. A bead on a rigid hoop. Consider a point mass sliding on the rigid hoop with
friction proportional to the speed of sliding along the hoop. No additional forces, apart
from the constraint to the hoop, act on the beadf.

Adiabatic motion of this system in the conservative case has been studied by Berry and
Hannay [3], who showed that as the hoop undergoes one slow revolution around a fixed
point, the bead nuinning with speed O(1) around the hoop ends up shifted—compared to its
position on a stationary hoop—by the arclength A/2x L, where A and L are respectively
the area and the length of the hoop. In this section, we demonstrate a different holonomy
effect in the ‘opposite’ asymptotic case of a rapidly vibrating hoop and in the presence of
friction. Again, as in the previous case, we will see an associated non-holonomic system
as the singular limit of the original holonomic system.

Equations of motion. Consider a smooth closed curve r : R — R? parametrized by
the arclength s and let this curve move: r(s,#) = —z(f) + r(s). We assume small-
amplitude, high-frequency motions: z(f, £) = £Z(t/e) (Figure 2). The negative sign is
used for convenience later. The hoop thus oscillates in a closed path, undergoing parallel
translations by —z. The equations of motion of the bead are

§+ki=a -T(s), . (20)

where a(t) = Z and T = r’(s) is the unit tangent vector. Indeed, in the hoop’s frame the
bead is subject to three forces:

. the d’ Alembert force —m{—%) = ma = a (we take m = 1),

. the frictional force, linear in speed, —k5T; and

. the reaction force normal to T.

The projection of these forces onto T gives § = —k§ + a - T, as claimed.

Remark 3. If the hoop is a circle, then the problem reduces to the pendulum with a
vibrating suspension.

With z = gZ(t/c), Theorem 3 applies: there exists a transformations = ¢ + &g(p, ¢, &)
turning the equation (20} into {19). The averaged equations take the form

& + ko =x¢u2+s(xA+Bf‘f), 2n
where:
o «t = kl(o,1) is the curvature of the curve normal to the family of translates
r(c) — z(1);

e  u =z AT is the normal velocity of the hoop;

. A is the area enclosed by the curve z(t); and

. k(o) = |’ (o) is the curvatare of the hoop as the function of the arclength.

We leave out the simple justification of the above interpretations, mentioning only that the
term xu~L could be guessed from heuristic considerations along the lines of [12].

1 The special case of the circular hoop is the forced pendulum.
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A normal curve
to the family of
translates.

\ - Family of translates of the hoop.
Only the translates corresponding

to the thickened part of the trajectory
of z are shown,

FIGURE 2. The geometrical interpretation of C for the hoop.

3.2. A particle in an acoustic wave. Consider a traveling planar compression wave in
a medium, with the displacement given-by @ cos(x — ct). Here x is the coordinate in the
direction of propagation of the wave. A suspended particle of mass m subject to a linear
drag force obeys mx + kx = @ cos(x — ct), or dividing by m and renaming the constants:

X 4+ kx = acos(x — c1). 22

The equation can be rewritten in our standard form with a = a{~sinc?, coset} and
F = {~sinx, cos x):

X+ kx =a()- F(x). (23)

Assume that ¢! = £ is small and that ¢ = & /m = O(1/g), so that the asymptotic
assumptions (15) hold. _
Thus Theorem 3 applies; the first and the third terms in the normal form on the right-
hand side vanish in this special case and the averaged equation simplifies to
J+ky =ckA+ 0D, (24)
where ek A = ka?/(2c3). We arrive at a somewhat unexpected result.

COROLLARY 1. The speed of drift is independent of the coefficient of friction k to the
leading order in ¢.

Indeed, each solution of the truncated system ¥ + ky = ka?/(2c%) approaches
exponentially to a linear motion y = a2/(2¢?)¢ + constant.

Acknowledgement. 'The research of ML was partially supported by NSF grant DMS-
9704554.

A, Appendix. Normal form calculation
As before, we define (1, 8) = (Z(z) -F(8)), f = af /atand f' = 3f/236. Equation (13),
with the scaling assumption (15), is then

§+k9=s"f(£,9). (A.1)
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In this Appendix, we show that this equation may be transformed into
b+ ko =—Ff +elkFf + LFF — 1P+ 06D, A2

from which Theorem 3 follows. We assume that the time average of f is zero, but at the
end of this Appendix we shall also give the equation that results if this average is not zero.
lLetr =t/e and 8 = £X. Then (A.1) becomes

X" 4 kX' = f(1,£X). (A.3)
We make the following transformation, where A is to be determined:
X =x+h(r,ex). (A.4)

Substitute (A.4) in (A.3), and relabel x to X to obtain
X"+ k1) +€{2h2 X’ + kX' + khy — hinhz) + e {h2a(X')? — 2hoh12 X' — khihy +h3hi1)
= f+efhf — haf) + & { (3) 7 —hhaf + h%f} + 0. (AS5)

Choose k, periodic in T and with zero average, so that the O(1) terms are autonomous.
The appropriate choice is :

h(r,eX) = f ’ f ’ flo,eX)ydo d& (A.6)
T YTp
soh=f hy=f.ha=fhn=f.hi2=f and ha = f”. Then (A.5) becomes
X" 4 e2f' X + kX' +kf} + e2{(FHX) = 2f'F'X - kff')
.. 2 e ..
=eff +&* [(%) F - ff’f’] +0EY. (AD

Rewrite as a system by defining ¥ = X"

X =Y
Y’=s[ff’—2_;”X’—kX'—kf} (A.8)
+ ¢ [(%) F=fFF = X + 27X+ kff’l +0().
We now avgrage the O(g) terms. Transform X and ¥ as follows:
X =x 4+ eul(z, ex, y), (A9)

Y =y +ev(r,ex. y).

We substitute (A.9) into (A.8). After some further manipulation, we relabel (x, y) to
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(X, Y) and obtain
X' =Y+elv—wuml+ e2{—u2¥ + uslvy — £+ 2F'Y + kY + kb fT} + O

(A.10)
Y =el—v + ff —2f'Y —kY — kf}
2
* ‘92[ —va¥ + (iz“)f — I1F = 2P Sk F
+ nfyy —ff'"+2f’Y+kY+kf]] + 0(%). (A.11)

We now choose u and v (periodic in T and with zero average) so that the O(¢) terms in
(A.10) and (A.11) are autonomous. In (A.11), we find the appropriate choice of v to be

v(t,eX,¥) = —2f'Y —kf + f ff' ~ ff do. (A.12)
From (A.10), we determine u to be h
u(t,eX,¥) = —2yft fldo —kfrfda+fz fa ff—ffdédo.  (A13)
With these choices of u an:iov, {A.10) andm(A.l 1) becc::ne °
X' =¥+ —uwa¥ +us(F7 +4¥)} + 0669
v =of ~ff kv
+ 52_{ ~nY + (f;) Fr=fFF = Y 2ffy
+kff +vs (}?7+ kY)] + o). (A.14)
We have used f = 0 and
}“}’?=fo' ff’da:—fol ff'do = —FF. A1)

We now make another change of variables to make the O (z?) terms autonomous:
X=x+ szp(r, £x,y),

s (A.16)

Y=y+e&g(t,ex,¥).

Put (A.16) into (A.14) and relabel (X, ¥) to (x, ¥):
X =Y+6|g—p1—paf —wa¥ +us fF+ir)}+ 06
Y = sl —f'_f" - kY}
f2

+ s2[ —q1— ¥ + (T)f” - fIF = Y2 Y

+kjf’+U3(F+kY)} + 0. (A.17)
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Now choose p and g, periodic with zero average, so that the O(£2) terms are autonomous.
We will not need the explicit formulas for p and g. We only need to note that the result of
this choice will be to leave behind the average of the non-autonomous terms. The resulting
system is

X' =Y+ 0

, - WimEs —= . o 3 (A.18)
Y = s[ "y ——kY] + {777 - ff’f'+kff’] + 0(e%).
Upon converting this system back to a second-order equation and using ¢ = £X and
t = er, we obtain (A 2), :

If the time average of f is not zero, the previous calculations can be modified to show
that the trans{orm__gd system is

G+kp=e'F = [ +elkfr + 475 - [FF (P F| + 0. an9)
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