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In this paper, we analyze the dynamics of a system consisting of two torsionally coupled pendula with
dissipation and with external forcing. In addition to several general results about the periodic solutions
of the system, we prove that a family of homoclinic solutions exists in part of the parameter space, and
give computational evidence that part of this family is the type considered by Shil’nikov. The existence
of such orbits generates rich dynamics, which we describe qualitatively and illustrate with computed

solutions.

1. Introduction

In this paper, we analyze the dynamics of a system
consisting of two torsionally coupled pendula with
dissipation and with external forcing:

$1+V<151+Sin¢1+k(¢1—¢2)=11 )

G2+ Wy +singy + klgy - ¢) =L . (1.1)

Besides being of intrinsic interest as a natural exten-
sion of the classical model of a single pendulum, this
system describes several physical phenomena such as
SQUIDs (Superconducting Quantum Interference
Devices) and charge-density waves.

Some major advances in the geometric theory of
dynamical systems have been slow in being applied to
differential equations because, although “it is useful to
solve differential equations’” (Arnold’s paraphrasing of
Euler [Arnold, 1983)), it is difficult to do so, i.e., to
extract the geometrical information from the analytic

expressions. Thus very few physical systems with 2
degrees of freedom have been understood geometri-
cally. The notable exceptions are the cases when extra
structure is present, e.g., complete integrability or a
small parameter.

In this paper, we combine the results of numerical
and geometric approaches to predict, describe and
explain some observable features of the system. One
such feature is a very transparent physical manifesta-
tion of the Shil’nikov bifurcation [Ovsyannikov &
Shil’nikov, 1987] — one can observe the geometrical
phenomenon in R* by simply watching the coupled
pendula tumble.

1.1. A single pendulum

A single shunted Josephson junction [Feynman,
1963] is described by the well-known and well-under-
stood equation of the single driven, damped pendulum:

¢+ M +sing =7T; (1.2)
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this equation is one of the basic simple models in
the theory of dynamical systems. It also arises in
various other applications such as charge-density
waves [Graner & Zettl, 1985] and electromechanical
problems of dynamos [Tricomi, 1931; Amerio, 1949].
Mathematically, this system has been well understood

‘for many decades [Amerio, 1949; Tricomi, 1931;

Andronov et al., 1949]. The dynamic behavior becomes
much more complicated if I is allowed to vary in time.
It is well known that if the forcing depends periodi-
cally on time (/=I()) the problem is beyond the
possibility of complete analysis. In fact, the simple
example of the periodically forced pendulum exhi-
bits virtually all the behavior that has been under-
stood so far in low-dimensional geometrical theory of
dynamical systems: KAM theory [Moser, 1973], Aubry-
-Mather theory [Aubry & LeDaeron, 1983; Mather,
1982], hyperbolic theory (horseshoes) [Moser, 1973],
bifurcation theory [Arnold, 1983}, Benedicks~Carleson
theory [Benedicks & Carleson, 1988), etc., with some
questions still unanswered.

1.2. Coupled pendula

The case of two or more coupled pendula offers even
less hope for a complete understanding, and we
readjust our goals. In certain parameter ranges, one
can still obtain a good understanding of the behavior;
for instance, in the case of two coupled pendula (1.1)
the regime of large coupling coefficient k has been
studied in several papers [Imry & Schulman, 1978;
Zimmerman & Sullivan, 1977]; the system behaves as

~ a single damped pendulum (for fixed y> 0 and suffi-

ciently large k). In the opposite extreme, that of small
k, the dynamics is richer but the system has been
understood virtually completely in this range as well.
In this paper, we combine geometrical and numerical
analyses to study the dynamics of Eq. (1.1) in the range
of moderate coupling k.

To give some intuition which will be relevant in our
later discussion of other parameter ranges, we describe
the behavior of Eq. (1.1) for the case of small coupling
k. We provide a heuristic discussion of the ‘caterpillar’
solutions; the details and the proofs can be found in
Levi [1988]. To simplify the discussion, we take I, = 0.
Assume that one pendulum, say ¢, starts near a slowly
moving sink of the first equation

(.ﬁ.l + yqél + Sin¢1 + kd)l = kd)z + Il s (133.)

with the right-hand side treated as a near-constant —
we are looking at the case of small k. Assume that the

other pendulum, ¢,, is meanwhile running according
to its equation

b2 + W2 + singy + kéy = k¢, ,  (1.3b)

Now, if a caterpillar solution is to exist, then ¢, will
have to start, i.e., the sink in Eq. (1.3a) which has held
¢, must disappear in a saddle-node bifurcation at
about the same time that ¢, stops running, i.e., when
Eq. (1.3b) with the right-hand side treated as a con-
stant acquires a heteroclinic connection. Thus, heuris-
tically, a necessary condition for a caterpillar solution
to exist is the near-simultaneous occurrence of the
saddle-node bifurcation for one pendulum with the
heteroclinic bifurcation for the other.

There have been several numerical studies of the
coupled pendula using numerical integration schemes

. to compute the stable periodic motions, for example

Marcus & Imry [1980] and Imry & Schulman [1978].
More recently, Aronson, Doedel and Othmer {1991]
have investigated the bifurcation of periodic solutions
as a function of the coupling strength k for small
damping and I, = I,. In Doedel et al. [1988] periodic
solutions were computed using a two-point,
boundary-value problem, and unstable periodic mo-
tions and bifurcation diagrams were presented. In
Aronson et al. [1991] the limit of zero damping was
considered, also on I, = I,. In this limit, the equations
become Hamiltonian and a family of periodic solu-
tions exists. It is shown in Aronson et al. [1991] that,
as the damping is increased from zero, bifurcations
from the Hamiltonian family give rise to a large
number of periodic motions, which disappear in turn
as the damping becomes larger.

In this paper we consider the damping y and the
coupling strength k to be fixed, and investigate the
(I;, I,)-plane. This is physically realistic, since the
torques can be changed without modifying the appa-
ratus, and is consistent with the calculations of Marcus
& Imry [1980]. We consider the evolution of one class
of solutions from the line I, = I, (those connected to
the synchronous solution) as the difference between the
torques is changed. We do not find, for example, the
periodic solutions with “winding number” three (these
exist for smaller coupling strengths on I, = I,, and may
still be present in the range of k discussed here).

1.3. Results: An outline

We begin by stating some of the basic properties
of Eq.(1.1) and its solutions. These include the

‘Hamiltonian form of (1.1); its symmetries, which



reduce the parameter space to a fundamental wedge
and generate surfaces in the parameter space along
which “symmetric” solutions exist; and finally a dis-
cussion of the equilibrium points of Eq.(1.1), their
stability and bifurcation behavior.

In Sec.2 we describe how the periodic solution
branches presented here were computed, and show
that when the damping y is nonzero, the Floquet
multipliers of a periodic motion may cross the unit
circle only at +1. This eliminates the possibility of
bifurcation to higher period than period doubling (e.g.,
period tripling), bifurcation to quasiperiodic solutions
and torus bifurcation.

Section 3 describes the behavior of periodic solutions
near a “Shil’'nikov bifurcation” in terms of a Poincaré
map. In Sec. 4, we present the main theoretical result
of this paper: that a family of homoclinic connec-
tions exists for moderately large coupling strengths .
This family may be parametrized by the difference of
the two applied torques I, - I,, and crosses the entire
fundamental wedge in parameter space. The coupling
strength must be sufficiently large that only one pair of
equilibrium points exists. In Sec. 5, we present the
results of computations of this family of homoclinic
connections at a smaller coupling strength, at which a
moderate number of equilibrium points exist. These
results indicate that the family of homoclinic solutions
still exists, and that it interacts with the additional
equilibrium points.

In Sec. 6, we interpret the motion of the pendula in
terms of the periodic motions near the Shil’nikov
bifurcation. We show, for instance, that for any given
integer N there is an open set in parameter space in
which a stable periodic solution exists whose behavior
can be loosely described as near-simultaneous tumbles
of the pendula with N relative oscillations per tumble.
We also point out that heteroclinic Shil'nikov bifurca-
tion may also occur in this problem.

Finally, in Sec. 7, we make some comments about the
relationship of these computed solutions to the “cater-
pillar” solutions, whose existence has been proved for
much smaller coupling strengths.

2. Qualitative and Numerical Analysis

2.1. General facts

We begin by presenting some easily derived facts
about the coupled pendula.
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2.1.1. The Hamiltonian character of the
equations

Equation (1.1) is equivalent to the damped
Hamiltonian system

x=JV.H - yDx , 2.1

0 I 00
J=(—1 0)’ D=(o 1)’

. 1 0
X = COI(¢I7 ¢23 ¢l,¢2)7 I= (0 1>,

where

with Hamiltonian

.o 1. .
H($1, 63, 61, 62) = 5((¢.)2 + (62))
- (cos ¢ + cos @)
+ ';'k(‘ﬁl - ¢2)? - Li¢y - Loy .

Differentiation of H along the flow gives

B i« -{GF + @GS0, 22)

so along a trajectory the energy H is decreasing.

An alternative formulation of (1.1) which is some-
times convenient is in terms of the half-angle between
the pendula, &, and the mean position of the pendula, »

¢ =5(o1 - ¢2)

N —

1
n= §(¢1 -.$2)

Eqs. (1.1) become

£'+ yé'+ sinécosn + 2k = I,

. (2.3)
i+ yn+sinncosé =1,
where
I —1—(1 - L)
c‘2 i 2
I—l(l + 1)
=7 2) .

In these variables, the system is 27 periodic in 7, and
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the Hamiltonian is

HEnER) = 5 (EF + 2 (07
- cosécosn + k& - IE-1In .

2.1.2. The symmetries of Eq. (1.1)

Equation (1.1) has several symmetries. Together,
these reduce the four-dimensional parameter space
{1, I, k, ) | k, y= 0)} to a fundamental wedge whose
intersection with the plane {k=const, y=const} is a
strip of width kx in the 1,7, plane. Equation (1.1) is
invariant under the following operations:

a) Permutation of the indices:

(¢la ¢2’ d;la ¢;2; Ils 12’ k’ )") _>(¢2, ¢l) ¢.2, ¢.l, 12, Ils ka }’)

b) Reflection of {¢,, ¢,} and {I,, I,}:

(¢l, ¢23 ¢.l’ qu’ Il, IZ! ka Y) -
(_ ¢l’ - ¢23 - ¢.1; - ¢52’ '—113 —12: k, y)

¢) 27 translation of #:

(¢l, &2, ¢.1, ¢52, Il, 12, ka y) -

(¢l + 27[5 4)2 + 27[5 q;ls (b.Z, 11’ 127 k> 7)

d) 2kr translation of I

(¢19 ¢2: d;l, ¢'2, Il’ 12: ks Y) -

(¢’l + 27:3 ¢2’ qsl’ (1;23 Il + 2k7z’ IZ - 2k7[9 ka )’)

Together these reduce the parameter space to the
fundamental wedge

I (I + I) (I + I)

= > €[0,0) I. = 5 € [0, km)

ke[0,0) ye[0, ) .

Along the edges of this domain, symmetric solutions
may exist. On I, = kz symmetric running solutions of
period T (see Sec. 2.3) satisfy

&+ T)2) = 7 - &,

ne+ T/2) = n(t) + . (2.4)

On I =0, symmetric solutions satisfy

E+plasing + 2kE=1,
n=0. (2.5)
That is, for I=0, the two-dimensional phase plane
{1 =~ ¢, ¢y = -} is an invariant submanifold of
the full phase space R*. On this submanifold, the
motion is equivalent to a single pendulum with a linear
restoring force, which is discussed in Levi [1988] in
connection with the caterpillar solutions in double
pendula equations.

On I.=0, the symmetric solutions are determined
by:

é=03

H+yn+sing=1. (2.6)
That is, for I, =0, the subspace {¢, = ¢,,$, =¢,} is an
invariant submanifold of the full phase space. The
dynamics on this submanifold corresponds to the
motion of a single damped pendulum. Figure 1 sum-
marizes its behavior.

For I < 1, there are two equilibrium points on the
invariant submanifold, one a stable center, the other a
saddle. For I > 1, there are no equilibrium points, and

TWO EQUILIBRIUM, UNIQUE
STABLE PERIODIC MOTION

—

S

NO EQUILIBRIUM, UNIQUE
STABLE PERIODIC MOTION

>

>

TWO EQUILIBRIUM, ALL
TRAJECTORIES APPROACH
EQUILIBRIUM

0.0 .5 .0 15 20

Fig. 1. The dynamics of the single, damped pendulum.



a curve I(y) exists such that I < I(y) there are no
periodic solutions on the submanifold. For I> I(y),
there is a unique stable periodic solution. On I =I(y),
a homoclinic connection exists from the saddle to its
periodic repetition.

In each case, nonsymmetric solutions of (1.1) may
coexist with these symmetric solutions, and may be
connected to a branch of symmetric solutions via
symmetry-breaking bifurcations.

2.2, Equilibrium points

The principal focus of this paper is on the homo-
clinic solutions of (1.3) and the periodic solutions
associated with them. The structure of the branches of
periodic solutions depends on the stability of the
hyperbolic equilibrium point associated with the ho-
moclinic solution. Hence, we begin our analysis with a
brief description of the equilibrium points of (1.1) and
their stability. By parametrizing the equilibrium points
by the half-angle ¢ between the two pendula, it is
possible to compute explicitly all the equilibrium
points. We have used this technique to produce the
figures below.

2.2.1.  Existence of equilibrium points

The equilibrium points of (1.1) are determined by

sin {cos n + 2kE = 1,

sinncosé = I . 2.7)

Therefore, equilibrium points exist only for

I.-1
2k

I+1
2k’

=¢=< I<|cos&|, and I=|sinn| .

(2.8)

For |I| > 1, no equilibrium points exist. Figure 2
shows the equilibrium points as a function of I for
k=0.landI.= kn/ 2. Figure 3 shows the half-angle & at

the equilibrium point as a function of both I, and I, °

for the. several values of k.

The different “figure 8" curves in each 7 interval of
¢ correspond to a “winding up” of the pendula. For
weak coupling, increasing the separation of the pen-
dula by 2z alters the applied torques by a small
amount (I, — I, + 2kn). This explains the large number
of equilibria for small k. (For larger values of k, most
of these equilibria disappear in a sequence of saddle-
node bifurcations.)

-
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s = g
-1 1 -l I
cos §= ‘11;5/5\\( cos £°I

E >
Ie-t = S

Fig. 2 The equilibrium points of the coupled pendula as a function
of the applied torque I for k=0.1, I.= kn/2.

2.2.2. Stability of equilibrium points

To determine the stability of an equilibrium solution
(D =(¢y, ¢, 0,0)) of (1.1), we linearize the system in
its Hamiltonian form (2.1), obtaining for the pertur-
bation X, X = (JH"(®) - yD)X = AX, where

0 0 1 O
0 0 0 1 ) a=cos¢ + k
h .
A -a k -y 0 ) wit b=cos¢y + k
k -b 0 -y

We find that 4 has eigenvalues A, = ~7/2+(-1)"

%yz + am, (M n=0,1) and the corresponding left
and right eigenvectors

(Anm + Y)k
_ (Anm +¥)(@+ am)

Wum = s

k
a+an,
k

a+am
v =
o Ak |

'lnm(a + am)

where

am = —(@+ b2+ (-1y"\J(a - b4+ 2.

Since the real part of any complex eigenvalue must be
-y / 2, there can be no Hopf bifurcation. It is also not
possible for two eigenvalues to be zero at the same
time, so all bifurcations of equilibrium points must be
simple bifurcations.
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Fig. 3a

Fig. 3b
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Fig. 3¢

Fig. 3. The equilibrium points of the coupled pendula as a function of the applied torques /, and 1,, (a) for k= 0.1, (b) k= 0.3, and (c) k= 0.6.
The vertical axis is the separation ¢ of the pendula at the equilibrium. The colors correspond to the stability. White is stable, yellow is unstable.
Red corresponds to p > 0 (see Sec. 3.1). Several images of the fundamental wedge are shown.

2.2.3. Degenerate equilibrium points

It is convenient to summarize the properties of the
equilibrium points by the bifurcation set in the three-
dimensional parameter space {(I,, L, k)}. The sets
corresponding to degenerate equilibrium points sub-
divide the parameter space into regions where the
number and type of equilibrium points is constant.

Degenerate equilibrium points are determined by
the condition that

cos ¢ + k -k
det( —k cos¢2+k)=0’

and thus they satisfy
cos ¢; = -kcos ¢1/(cos ¢ + k)

sing; + k(¢ - ¢;) = I

[l

singy + k(¢ — ¢y) = I, . (2.9)

Figure 4 shows the degenerate equilibrium points
corresponding to Fig. 3a, and Fig. 5 shows the degen-

erate set in the three-dimensional parameter space.

I=0

Fig. 4. The bifurcation set of equilibrium points at k=0.1. The
section of the fundamental wedge is marked, as is the line /=1,
above which no equilibrium points exist.
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2.2.4. Bifurcations of equilibrium points

The condition for a degenerate equilibrium point is
simply ab = k? (recall that a = cos ¢, + k, b=sin ¢, + k),
so at the degenerate equilibrium points

0 =0, aj=-(a+b), if a+b>0,

oag=-(@a+b), =0, if a+b<0.

This implies that the null vector is

a+b>0
doo = 0,
)’10= -7,
dot = —7/2+\[PP[4-(a+D),
I = —y[2 - \PPfa-(a+b).
a+b<0:
Ago = -7[2 + \/y2/4—(a+b),
Jio = -v[2-+[¥}[4-(a+b),
/101 =05
Ay = -7.

There are three possibilities as we move away from the

equilibrium point:

1. If y2/4-(a+b) <0, the degenerate equilibrium
point breaks into a stable node and a hyperbolic
equilibrium point which has one unstable eigen-
value, one real stable eigenvalue, and a pair of
complex stable eigenvalues.

2. 1f0<y?/a-(a+b)<y? / 4, the degenerate equilib-
rium point breaks into a stable node and a hyper-
bolic equilibrium point which has one unstable and
three real stable eigenvalues.

3. Ify2 / 4<y? / 4 - (a + b), the degenerate equilibrium
point breaks into two hyperbolic equilibrium points,
one which has two unstable and two real stable
eigenvalues, and another with one unstable and three
real stable eigenvalues.

2.3. Periodic solutions

From a computational standpoint, to understand the
motions of the pendula we need to be able to compute
periodic solutions of (1.1) and their dependence on the
parameters. There are basically two approaches, the
first is to integrate the equations numerically. With
appropriate initial conditions, this allows the stable

periodic solutions to be found. The second approach is
to formulate a nonsingular, boundary-value problem
for the periodic motions [Doedel et al., 1984; Holodi-
niok & Kubicek, 1984; Keller & Jepson, 1984; and
others] and to solve it using an iterative solver. This
second approach has the advantage that both the stable
and unstable motions are obtained, and that the period
is explicitly computed.

The two-point, boundary-value problem for (1.1)
with periodic boundary conditions is singular, with a
null vector which (for autonomous systems) is simply
the time derivative of the periodic solution. This singu-
larity, which corresponds to an arbitrary shift in the
origin of time, is removed by appending a phase con-
straint. As long as the phase constraint is not degener-
ate, this augmented system is regular for nonsingular
periodic solutions,

We have used this approach with pseudo-arclength
continuation [Keller, 1977], and computed all of the
periodic solutions which are connected to the synchro-
nous solution.

2.3.1. Every nonequilibrium periodic
solution is a running periodic
solution

Equation (2.3) is invariant under translations n—
n+2mn By identifying the phase plane (& 1,6 M
modulo this translation, we obtain a phase flow defined
by (2.3) on the cylinder S' xR? = {(, n mod 27,¢, M)}
Those periodic solutions which wind around the cylin-
der will be called “running” periodic solutions. For such
solutions, we have n(T) - n(0) = 2zm for some integer
m # 0. We point out that any periodic solution which is
not an equilibrium is a running periodic solution. In
other words, any periodic solution with 7(¢) bounded is
actually an equilibrium. Indeed, for any periodic solu-
tion of period T with n(T) - n(0) = 2zm we have

T . .
HT) - ) = ~2nmI = =y [ (8 +éDdt 5

where the expression for H in the (& #) variables was
used in the first equality and the dissipation relation
(2.2) in the second. This shows that m# 0, thus
proving the remark.

2.3.2. Discretization of the equations for
periodic solutions

To compute running periodic solutions, we intro-
duce two 2r-periodic functions, p, and p,. A running

_ periodic solution of type m and period T is written as



$1(8) = p(w) + mot

$2() = pa(wi) + mowt (2.10)
where w = 27:/ T. A direct substitution gives the follow-
ing equations for p, and p,.

@’ Py + ywpy +sin(p, + wt) + k(p; - p3) = I, - myw

WPy + ywPy +sin(py + wt) + k(p2 - p) = - myw .
2.11)

We approximate these equations on a uniform mesh
in time using the second-order finite difference scheme:

> 1
Lpl + Z(E2+2E+I)k(p1—p2) = Il—ma)

~ 1
Lp, + Z(E2+2E+I)k(p2—p1) =L-mow
(2.12)

where

Lu-= 2 _ YO 2
u (E 2E+I)u+2At(E Nu

A
+ -i—(E2+2E+I) sin(u + wt) .

Here Eu(t)=u(t+At) is the forward shift operator.
This is equivalent to writing (2.12) as a first-
order system u=f(u, ) and using the box scheme
(E-DufAt= (E+D)f(u,1)/2.

For general systems, it is best to use a phase
constraint which approximately minimizes the L,
norm of the derivative of the solution with respect to
the parameter [Doedel et al., 1984]:

Xo(x = xg) = O.
We have also used the phase constraint
#1(0) + ¢2(0) = n(0) = 0,

originally for comparison with previous results. In
practice, we experience no difficulties due to the
possibly degenerate phase constraint, but do not
recommend its use. The resulting system, boundary-
value problem and phase constraint, can be viewed as
a system for (¢,, ¢,, ') as a function of (k, y, I,, I,).
It is also possible to construct a system which allows
homoclinic solutions to be computed directly [Beyn,
1987; Doedel & Friedman, 1989]. The system is
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constructed in the same manner as for a periodic
solution, except that the boundary conditions are that
as t— - oo the solution approaches the equilibrium
point along the unstable manifold of the equilibrium
point, and as t— oo it again approaches along the
stable manifold. A phase constraint is again required.

2.3.3. Continuation

The basic computational task of the continuation
method is the solution of linear systems involving the
Jacobian. The Jacobian of this system, with the phase
and arclength constraints, is a block tridiagonal matrix
(with 4 x4 blocks) bordered by six columns (four
boundary values, the period and the parameter) and
six rows (four for the periodic boundary conditions,
the phase constraint and the pseudo-arclength con-
straint). On a mesh of N intervals this is an (2N +2)
x (2N +2) system. We solve these systems using a
bordering algorithm [Keller, 1977}, which blocks the

system into the form
A b)
c* d

where 4 is a (2N-2)x(2N-2) block tridiagonal
matrix, b and ¢ are (2N -2) x 4 matrices, and d is a
4 x 4 matrix. The system can be solved using one LU
factorization of 4, and 5 backsolves.

Approximate Floquet multipliers may be found
during the bordering algorithm by performing an
eigenvalue decomposition of an intermediate 4 x 4
system. This requires two additional backsolves. For
accuracy, we first eliminate the multiplier which sits at
1, using the phase constraint.

Bifurcation points are detected using the approxi-
mate Floquet multipliers. When a multiplier crosses
the unit circle, a bisection algorithm is invoked to
locate the precise point where it crosses. The eigen-
vector corresponding to this multiplier is then com-
puted. (Using the intermediates of the bordering
algorithm, this requires one backsolve.) This allows the
tangent of the bifurcating branches at period-doubling
and symmetry-breaking bifurcations to be computed.
For example, if #(f) is a running periodic solution of
type m, and is a period-doubling bifurcation point,
then the doubled branch is a running solution of type
2m, and the doubled branch is approximately

u(t) + ev(t)
u(t) - evt - T)

where v(z) is the eigenvector correspohding to the
multiplier - 1.

O0<t=sT

“(’)~{ T<t<2T
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Fig. 5a.

The bifurcation set of equilibrium points in the entire parameter space. Several images of the fundamental wedge are shown.

Fig. 5b. The interior of the bifurcation set shown in Fig. 5a.



There are two regimes for which asymptotic expres-
sions for periodic solutions are known. These are
strong (ky 2 > 1) and weak coupling. The synchronous
solution exists for strong coupling, and is such that the
separation between the pendula is essentially constant
over the period; hence the pendula move roughly as a
single pendulum. The synchronous solution is given
approximately by

w,~ 1]y,
Ns ~ t,
&~ 12k .

The small coupling (‘caterpillar’) solutions have
already been discussed (Sec. 1.2), but are rather more
difficult to construct, and require a good adaptive
mesh strategy to handle the different time scales during
the period.

2.3.4. Nonexistence of quasiperiodic and
torus bifurcations

The damped Hamiltonian structure drastically sim-
plifies the possible bifurcation behavior of periodic
solutions. The following result is the dissipative Hamil-
tonian version of the Lyapunov-Poincaré theorem
[Yakubovick & Starzhinskii, 1975].

Theorem 2.1.! Let x(1) be a periodic trajectory of the
damped Hamiltonian system (2.1) with period T. Then
Floquet multipliers of x(t) must appear in quadruplets
e /e /).

Proof: The linearization of (2.1) about the periodic
trajectory x(¢) is

y = (JH"(t) - yD)y ,
where H” is the Hessian matrix of H:

&*H

H ij(t) = ax,a—xj X0

The fundamental solution matrix Y of this equation is
defined by

Y = (JH"(t) - yD)Y, Y(0) =1.

A simple substitution shows that the product Y7JY,
satisfies ’
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d
E(YTJY) = -yYly),

which implies the “dissipative symplectic” character
of Y:

YTJY = e 7'J .

Thus e‘¥/27t¥(1) is symplectic (V27 Y)TJ(eV/?"'Y) =
J), and its eigenvalues appear in quadruplets of the
form (4,7, 1/4,1/7). The Floquet multipliers of the
trajectory are the eigenvalues of Y(T).

This result drastically simplifies the possible bifur-
cation behavior on periodic solution branches of (1.1).
If x(¢) is a periodic motion of period T, one of its
Floquet multipliers is 1. There are only two possibili-
ties for the set of Floquet multipliers:

(17 e-}'T’ ae-(l/Z)}'T, lze—(l/Z)yT)’ QER

or

(1, €717, B~/ T Be-U/MTy - BeC, |B] = 1.

A bifurcation occurs on a periodic branch when one
or more Floquet multipliers lie on the unit circle. This
crossing can happen only at *1, (for = +e"/277T),
and only one multiplier can cross. This means that
only regular and period-doubling bifurcations can
occur.

3. Geometry of Shil’nikov’s bifurcations

We give a brief exposition of the essential part of
Shil’nikov’s picture [Ovsyannikov & Shil’nikov, 1987]
which allows one to visualize at a glance all the
consequences of a homoclinic saddle-focus connection.
Full details and proofs can be found in Ovsyannikov &
Shil’nikov [1987]; see also Glendinning & Sparrow
[1984] for a discussion of the three-dimensional case.

3.1. Poincaré map and its properties

Consider a flow in R* with a saddle-focus equili-
brium,? i.e., let the eigenvalues satisfy 4,,=a=*iw,
w#0,1;<a<0,1,> -af>0). Without loss of gen-
erality, we assume the equilibrium to be at the origin
with the x,, x,-plane being the eigenplane of 4, , and
with x;-, x,-axes being the eigendirections of 13, 44
correspondingly (Fig. 6).

"The version of the proof %éxen here is due to L. Reyna, IBM_ Research.

2Consideration of a flow in

poses a difficulty not present in R®. Taking a dimension higher than 4, on the other hand, adds no new problems.
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X4

Xy

Fig. 6. The saddle-focus equilibrium and homoclinic connection.

Let W™ be the unstable manifold of the saddle-focus;
we assume a homoclinic connection, i.e., we assume
that the solutions lying on W* approach the saddle-
focus for t— + o0 as well. Without loss of generality,
we assume that the flow is linear in a J-neighbor-
hood N, ( > 0) of the origin. Choosing a point a = O, q,
x° 0)e NsN W*N W* at a distance < g from the origin
(Flg 6), we define the Poincaré section Sy by

X1 =0
a/2 <X <6
—5—<—X355 ’

OSX455

We define another section S| by S, = {x,= 4, |2, ]
+|X3] + |x3| =4}, and introduce the section maps
Fo, and Fyo from S, to S; and from S, to S, by
following the flow from one section to another. The
map Fy, can easily be written out explicitly using the
linearity of the flow near the origin:

0 - X2e* sin wt x4
X2 X6 cos wt X2
FOl . - = ’ ?
X3 x3elzl X3
X4 P x4
where
1, &
t=—Iln—,
}.4 X4

a
>

, XY . fw, d
X = -x 5/ s /1—4111;4 ,

*Fy, may be undefined on parts of S,

or more explicitly, with p =

, X4\ w, 0
X5 = —-X3 r cos }‘—“lnx—4 >
X4 P
’ _x3 3 ,

= -';-3> p. The expression for F,, depends
4

on the global behavior of W*¥; in a neighborhood of
(0,0, 0,9) it can be approximated by a linear map

=
w
]

where p,

X1 x”l

X1 "

X3 X2

FlO : —a+ 4l x = ”
X3 X3

x3 "

) X4

where A is a 4 x 3 matrix determined by the lineariza-
tion of the flow along the piece of W™ joining S, to S,.

The composition F = F|, © Fy, taking S, to itself 3 is
shown in Fig. 7.

We note first that the image Fy,S, is close to the
2-dimensional (x,, x,)-plane in the three-dimensional
section S, since the x;-coordinates of the images are
small compared to the other two: e?* <« e*.

The image Fy, S, looks like a spiral; horizontal slices
x4 =const. of S; map into transversal sections of the
spiral, as shown in Fig.7; as x, decreases to O,
thesections zoom around the spiral infinitely many
times, tending to the center.

The tightness of the spiral is determined by the ratio
p :if p < 1, the spiral is tight on the outside and

spa:se closer to its center (Fig. 8) while p> | the
opposite is the case. One might restate this even more-
loosely by saying that for p<1 a passage by the
hyperbolic equilibrium in the phase plane has a
stretching effect, while for p> 1 the effect is a com-
pression.

The map F, takes the nearly two-dimensional spiral
affinely into the cube S,, as shown in Fig. 7; we want
to avoid the possibility of having the image in .S, of the
two-dimensional tangent plane (at the center) of the
spiral to be of dimension one. Subject to this trans-
versality condition, the image (F,o © Fy,)S, is a spiral
as shown in Fig. 8.

We now assume that with an extra parameter b we
can move the unstable manifold W* so that the
x4-coordinate of the intersection W* N S, (which is the
center of the spiral) changes together with 5. The
vertical (x,) position of the center of the spiral will
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Fig. 7 The section S, and the image of a cube under F, which maps
So Into itself.

have an effect on the qualitative properties of the map.
It is not necessary to introduce a second parameter
controlling the horizontal position of the spiral’s center
since horizontal sections x, =const. of the cube So
have small images for small x,.

As observed above, the map F is nearly two-
dimensional: the image of S, in S, lies in a small (with
respect to &) neighborhood of a 2-D plane.

Approximating this 3-D map by a 2-D map, we
reduce the problem to a mapping of the plane to it-
self, as shown in Fig. 8. This can be done rigorously.
The resulting map can be further reduced to a one-
dimensional map x4 > f (x,) with little loss of informa-
tion, by assigning the x,-coordinate f(x,) to the point
(x1=0, x,=a, x3=0, x,).

As the parameter b changes, the graph of fshown in
Fig. 8 moves in a vertical direction with saddle-node
pairs of equilibrium points of the map f appearing or
disappearing each time the graph becomes tangent to
the bisector.

Xg Xq
_-—

©)|

Xg X2

f(Xq) Y f(Xa)

——

N I VAR A

Fig. 8. The spiral forp < 1 (left) and p > 1 (right). Below each spiral
is the corresponding map f(X,,).
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4. Existence of Homoclinic and Hetero-
clinic Connections

In this section, we prove the existence of homoclinic
and heteroclinic connections for the system of coupled
pendula. The theorem below states the existence of
homoclinic connections for moderate values of k.
Numerical evidence presented in the following section
shows the existence of homoclinic connections with
fewer restrictions on the parameters.

Theorem 4.1. Let k be such that, for all I,, I, there
exist exactly two equilibria for

{L¢1 + ko - ¢2) = I
4.1)

Loy + oz - ¢1) = I

where Lo=¢+7¢+$ing. (Any k> 1, for instance,
satisfies this condition.) For any fixed value of I,
there exists a corresponding value I,=1,(I,, k, y) with
0<1,+1,<2 such that Eq.(4.1) possesses a homo-
clinic solution connecting the (unique) saddle to itself
Proof. The two equilibria of the pendula are sketched
in Fig. 9 below.

Let D) =D(1, I, I,) = (¢, b2, ¢1, $,) be a solution
lying on the unstable manifold W* of the saddle,
with £> 0. We note that O(¢) is defined uniquely up
to a time-translation. Fixing any arbitary value of I,
throughout this argument, we follow the behavior of the
unstable manifold ®(¢, 1,, I,) = O(¢, 1) for different val-
ues of .

For I; + I, = 0, any solution, and in particular ®(7),
tends to a sink. Let I} be the largest number such that
for all -I; <I, <I; the unstable manifold solution
®(¢, I,) terminates in the sink. It is clear that I¥
+1; > 0, since the property of terminating in the sink
is an open one. We would like to prove that I, = I} is
the homoclinic value; to that end, it suffices to show
that ®(¢, 1) tends to an equilibrium; by the definition
of I}, it must be a saddle, which prove the theorem. To
prove that the solution ®(z, I}) does indeed tend to an
equilibrium, we show first that the number of tumbles
(of the center of mass 7 of the solutions ®(z, I,)) is
bounded uniformly for all

-LshL<I}, (4.2)- -

more precisely, we will show that there exists a

constant bound B > 0 such that for all 7, in the interval
(4.2) we have

t

MO - M- 0)=3 (61 + 6)| =B

[ ]

(4.3)
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P2

(a)

(b)

Fig.9. The two equilibria of Theorem 4.1.

for all € (- o0, ). .

We first prove this bound, and then use it to show
that I,=I is indeed the homoclinic value. The
Hamiltonian

H = %(d;"2 +17) + k&2 - & - cosncosé - In

is decreasing along any solution, so that for any ¢ we
have

H(t) = H(0) . (4.49)

To estimate H(oo) we note that for any I, subject to

(4.2) the statements (i)—(iii) hold:
(i) &(o0)=1(0)=0; any equilibrium satisfies

(i) [&oo)| < 220l2+t g
(iii) there exists a constant 4> 0 such that [ m(o0) |
< A.

Indeed, (i) follows from the fact that each solution
on W* tends to an equilibrium for -1, <1, < I#. The
bound (ii) on |&(c0)] is obvious from the equilibrium
equations (2.7). To prove (iii) we note that n(e, L) is
continuous in I, and its limit 5(c0, I,) is at the sink for
each value of I, in the interval (4.2), and therefore S is
continuous in I, in the interval (4.2) and consequently
stays bounded as I, — I#. It should be pointed out that
no statement is made (as yet) about the boundedness
of 7(¢) uniformly in ¢ and I,, but only about the limit
1(c, 1), uniformly in I,. Using these estimates, we
conclude that

H(co) = C(k, 4) , (4.5)

for all I, in the interval (4.2). We also note that there
exists a bound C uniform in 7, lying in any bounded
interval (and in (4.2) in particular):

[E, 1€, 17| <C VieR, (4.6)

as has been shown by a Lyapunov function argument
[Levi et al., 1978]. Using these bounds we obtain from
Eqs. (4.4) and (4.5):

n(r)s%(-H(oo) #5824 + 222 - 2KE

- 200511cos€)<-1i((]2(1 +2K) + 2KC + 2)=B .

Having thus established the key bound (4.3) we show
that /=1I% is a homoclinic value. Indeed, D¢, IF) is
bounded: for I=I the estimate (4.3) still holds by
continuity of #7(t, I,) in I,: we take the limit as L—I¥
for each fixed ¢.

We conclude from the boundedness of the sum
2n=¢1(L, I3) + ¢o(t, I¥) that D(2, IF) tends to an equi-
librium. This equilibrium cannot be a sink, since
otherwise /3 could be increased further, contrary to its
definition. Hence ®(t, I#) tends to the saddle, which
completes the proof,

Remark. If k is small enough, there exist no hetero-
clinic loops, i.e., connections of the type A-B-A
between any two saddle points A and B. We do not
carry out the details, but only mention that this can be

proved by treating each equation in the system as an



equation of a single pendulum with a slowly varying
torque, by the approach used in Levi [1988]. This slow
variation precludes, as it turns out, a homoclinic
connection 4 — B between two points 4 and B if there
already exists a connection B — 4. This impossibility
is due to the dissipation of inertial effects which occurs
over a long relaxation time during which one pendu-
lum moves and the other “stands”.

5. Computational Results

5.1. Periodic solutions connected to the
synchronous solution

The following results were obtained with a mesh of
250 points per period. For period-doubled branches,
this was doubled to 500 points in order to preserve the
overall accuracy of the solution. We found, by recom-
puting certain solutions with a finer mesh, that this
mesh was sufficient except for the very long period
solutions (T > 50), that is, the near-homoclinic solu-
tions. For the results below, the approach to the
homoclinic solution was sufficiently rapid that the
correct location could be found well before the mesh
became inadequate. The location of the homoclinic
orbits at several points was checked with computations
on a mesh with 180 points, and the results agree to one
percent.

For fixed k=0.1 and y=0.5, we find that there is a
path of homoclinic orbits which extends from I, =0 to
I. = kn. There are two pairs of folds on this path, which
break the interval into several pieces, corresponding to
different behavior of the branch of periodic solutions
connected to the synchronous solution.

For 0=1.<0.65kn, the synchronous solution has
increasing period as I is decreased (Fig. 10). The pen-
dula each makes one ‘tumble’ per period, and they do
this in unison. As I is decreased, the time between
tumbles increases and the solutions on the branch ap-
proach the homoclinic orbit A4. I, controls the separation
between the pendula, which is essentially constant over

the period. As I approaches zero the homoclinic orbit 4

approaches the symmetric homoclinic orbit where the
pendula act as a single pendulum. Near I = 0.7 the main
branch undergoes a period-doubling bifurcation, which
also breaks the synchronization between the pendula.
The period-doubled branch initially increases in period
as ] increases, with one pendula tumbling slightly before
the other. At larger I < 1, there is a fold on the doubled
branch, after which the period increases as I decreases,
eventually approaching the homoclinic orbit 4’. This
orbit is associated with a saddle-focus, and has a value

-
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of p near 0.3. The excursion of the branch to the fold
point serves to move the periodic orbit away from the
equilibrium point with small £ and toward the saddle—
focus.

Near I.=0.525kn, a second branch of periodic
solutions appears (Fig. 11). This branch still consists of
running periodic solutions with m =1, and connects
two homoclinic orbits B and C. As I, is increased, this
branch widens, until near I.=0.675 the homoclinic
orbit B coalesces with the homoclinic orbit 4 on the
main branch in a fold on the path of homoclinic orbits.
Homoclinic orbits B and C each pass close to two
equilibrium points, one of which is the equilibrium
point associated with the homoclinic orbit 4, the other
is a saddle-focus. Homoclinic orbits B and C can be
distinguished by how close they approach these equi-
librium points. B spends roughly equal time near both
equilibrium points, while C stays longer near the
saddle-focus.

For 0.675kn=<1,<0.95kn, the branch containing
the synchronous solution approaches homoclinic orbit
C in an oscillatory manner, consistent with the behav-
ior near a Shil’'nikov-type orbit with p < 1. We find
that for the saddle-focus associated with orbit C, the
parameter p is approximately 0.65 near I.=0.95kn,
and decreases to about 0.5 as I approaches 0.675 kx.
Between the folds on the periodic solution branch (e.g.,
a-a’ in Fig. 12) lie pairs of period-doubling bifurca-
tions. These occur where the analysis of the return map
near the homoclinic orbit predicts that the main
branch should lose stability (see Glendinning & Spar-
row [1984]). The period-doubled branches emanating
from the bifurcation points approach secondary homo-
clinic orbits D and E, and show the same oscillations
that the main branch does. We have not checked the
stability of these doubled branches, but it is likely that
they also have pairs of period-doubling bifurcations,
which lead to a second level of secondary homoclinic
orbits. As I. approaches 0.675km, the main branch
develops a region with large period, which eventually
forms the pair of homoclinic orbits AB discussed
above.

For 0.95kn < I, < kn the synchronous solution again
approaches a homoclinic orbit (4) of the Shil’nikov
type, with p<1 (Fig. 13). There is again a disjoint
branch connecting two homoclinic orbits (B and C).
As I, is decreased, B and A coalesce, leaving C to
persist for lower values of I.. The homoclinic orbits
appear to be the large limits of the three branches of a
perturbed symmetry-breaking bifurcation. The homo-
clinic orbits spend time near two equilibrium points
with nearly the same value of #, but oppositely signed
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PERIOD DOUBLING
BIFURCATION

TO SYNCHRONOUS
SOLUTION
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Fig. 10. The periodic solutions connected to the synchronous solution for k= 0.1, 7= 0.5, I, = 0.1kn. Solutions were computed on a mesh of
250 points per period. Solution A is nearly homoclinic, with one tumble per period. Solution A’ is nearly homoclinic with two tumbles per
period. The period shown for the period-doubled branch is half the actual period.

values of the separation & Homoclinic orbit A spends
more time near one equilibrium point than the other,
C spends more time near the other, and orbit B spends
roughly equal time near both. '

5.2. Paths of homoclinic solutions

In Fig. 14 we show computed curves of homoclinic
connections for k=0.1 and y=0.5.
The behavior of the periodic orbits near the homo-

clinic connection associated with a saddle-focus is

determined by p, the ratio of the strength of the stable
focus to the strength of the unstable direction. Near a
degenerate equilibrium point which breaks into a
saddle and a stable focus

_ ~Rello)
7= o
r/2

~y[2+ \/iyz - -;—(a+b)+ \/‘—lt(a—b)%kz

Near the degenerate point, p becomes infinitely large.
The critical value is p = 1, which is determined by the
condition that

o

1 1 1 2 i
Zyz-z(a+b)+\/4(a bY + I = ¥ .

Or,
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Fig. 11. The periodic solutions for k= 0.1, y=0.5, I. = 0.55kn. A branch of period-doubled solutions also exists, but is not shown. (The mesh

is the same as in Fig. 10).

-kcos¢; - %yz(%yz + COS ¢; + 2k>

cos ¢; = 3
cos¢; + k + =2
4
I) = sing, + ke, - ¢2) (5.1)
L = singy + K¢, - ¢)) .

This is subject to the conditions that the equilibrium
point be hyperbolic,

'_%(a+ b) + W/i(“' b} + k>0
%yz_%(a_,_ b) - ,/i(a—b)2+k2<0.

As the damping y goes to zero, these lines of p=1
approach the lines of degenerate equilibrium points
(compare (5.1) to (2.3)).

These critical lines are shown in Fig. 14, together
with the paths of homoclinic connections. The curves
of homoclinic orbits do not cross the critical lines.
Homoclinic orbits on the lower branch of the “S” (4
and B for I, < 0.675kn) are not of the Shil’'nikov type;
branch C is, with values of p between 0.4 and 0.65.

6. Physical consequences of Shil’nikov’s
picture
After the existence of the saddle-focus connections
has been established, it remains to interpret geometri-

cal properties of Poincaré map in terms of the motions
of the pendula.



44 M E. Henderson et al.

PERIOD

0. L —

-

; PERIOD DOUBLING
BIFURCATIONS

TO SYNCHRONOUS
SOLUTION

5

I

1.

Fig. 12. The periodic solutions connected to the synchronous solutions for k=0.1, y= 0.5, I. = 0.675k=n. Points on the solution branches are

quadratic fold points. (The mesh is the same as in Fig. 10).

We give here a translation of the geometry of the
map into the physics of motion.

Referring to Fig. 7, let us move an initial condition
ze S, down towards the plane x, = 0. The image F(2)
will travel along the spiral towards its center, executing
infinitely many revolutions.

One revolution of F(z) along the spiral corresponds
to the trajectory of the flow making one extra rotation

in the (x,, x,)-plane; this in turn corresponds to the’

angle (¢, - ¢,) between the pendula making one extra
oscillation.

Using this key remark, we translate the result of the
geometric discussion, obtaining the following conse-
quences. For convenience, we fix I, to be constant and
choose I as the parameter.

1. There exists an integer N, and a countable set of
parameter intervals I” enumerated by n> N such
that, for each I'eI”, Eq.(1.1) has stable periodic
solutions executing n relative oscillations of ¢ for
each full revolution of 7.

The computations show this as an oscillation of the ]
branch of periodic solutions as it approaches the
homoclinic orbit. Figure 15 shows solutions for
I.=0.7kr at various points on the path; we sketch
the orbit in the neighborhood of the saddle-focus as
well as the corresponding physical motion of the
pendula. Each fold on the solution path adds
another oscillation about the equilibrium point,
which is consistent with Fig. 13. At a fixed value of
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TO SYNCHRONOUS
SOLUTIONS

I we see a sequence of fixed points of the return
map with decreasing values of x, and increasing
period.

. For some (actually, for a Cantor set of ) parameters
the map possesses infinitely many coexisting sinks;
Eq. (1.1) thus possesses infinitely many coexisting
stable periodic solutions.

. In the near-homoclinic case and for p > 1, Eq. (1.1)
possesses a small attractor (in the sense of Conley
[1978]), which is either a stable periodic orbit (if
W < A4) or more complex chaotic if w>> 1, and
I - Iy omoctinic 18 NOt too small. This attractor mani-
fests itself as a periodic. solution in a simulation if
the precision is not too high.

. There exists a sequence of intervals I, clustering at
Iy omociinic and an integer N, assigned to each interval

1.

Fig. 13. The periodic solutions connected to the synchronous solution for k= 0.1, y = 0.5, I = 0.975kx. (The mesh is the same as in Fig. 10). 4

“such that for all IeI,, given any doubly infinite
sequence of positive integers . . .n_ nonn,. . ., With
n; = N,, there exists a solution for which ¢ executes
n; oscillations on the ith revolution of the center
of mass 7. This is explained by the fact that as
I— I ymodiinics the movement of the spiral through
the section S, causes the appearance of the horseshoe
maps as subsystems of the maps S [Moser, 1973].
The number of relative oscillations of the pendula is
determined by the integer label of the strip in the
horseshoe map, and can be controlled by a proper
choice of the integer sequence (cf. Moser [1973]).
There are many finer details of the picture that one
can bring out [Ovsyannikov & Shil'nikov, 1987, and
others], but we stop here, since the physical manifes-
tation of most of these details is not observed numer-
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Fig. 14. Computed nearly homoclinic connections as a function of both torques I, and I, for k=0.1, y=0.5. Near-homoclinic connections

with two tumbles per period are marked with diamonds.

ically in this particular system due to the smallness of
the basins of attraction. For instance, the invariant
Cantor set of the horseshoe that gives us the sequences
of integers has zero measure and thus zero probability
of being observed as an asymptotic state. It must be
pointed out, however, that the set’s significance may
rather lie in the fact that it may serve as a shared basin
boundary of different sinks, i.e., as a “watershed”
between different stable regimes.

The higher period Newhouse sinks have a small
measure of the basins, and they do not show up
numerically as well.

Remark. Shil’nikov heteroclinic bifurcation is of co-
dimension two, since we have to satisfy two scalar equa-
tions, assuring that each of the one-dimensional unsta-
ble manifolds hits the appropriate three-dimensional
stable manifold in R*. Only isolated curves in the three-
dimensional parameter space (I, 1, k) (or isolated
points in the ([}, I,)-plane) satisfy the heteroclinic con-

dition, thus creating an impression that the phenomena’

observed here should occur rarely. There are two factors
that invalidate this impression to some extent. First,
some of the connections occur along the symmetry line
I, =kn, 50 in the space of systems with such symmetry
Shil’nikov heteroclinic bifurcations are of codimension
one, and second, the neighborhoods of isolated points

-

where the Shil’'nikov heteroclinic behavior is manifest-
ing itself is quite large numerically. For these values of
k and y, we see homoclinic orbits which spend time near
a second, almost symmetric equilibrium point, for val-
ues of I, down to 0.9kn.

Remark. Secondary homoclinic bifurcations. We give a
brief description of the secondary homoclinic connec-
tions, i.e., the connections in which the unstable man-
ifold makes two or more passes in the region away from
the neighborhood of the saddle-focus. Let C denote the
center of the spiral, i.e., the point of intersection of W*
with the Poincaré section S;. We let the parameter b
decrease toward 0 and observe the resulting change of
the image point F(C). If this point lies on the stable
manifold x, =0, then the solution z(t) with z(0)=C is
doubly homoclinic. Indeed, following this solution, i.e.,
the motion of the point C backward in time, we observe
that it makes one global loop in a tubular neighborhood
of W™, crosses the Poincaré section .S; going downward
(i.e., with x, decreasing) and approaches the saddle-

focus as t — - co. Forward in time, z(¢) makes one loop
following a tubular neighborhood of W* and enters
the plane {x, =0}, and hence stays forever in the &
neighborhood of the saddle-focus approaching it for
t— - 0. We conclude that the corresponding solution

makes two passes in the global region before re-entering
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Fig. 15. Solutions at k=0.1, y=0.5, I, = 0.7k, near the homoclinic orbit. The superimposed time traces of both pendula are shown for one
complete orbit, together with a projection of the trajectory onto the eigenspace of the saddle-focus. The stable manifold is horizontal, the

unstable one is vertical.

the neighborhood of the saddle-focus forever.

We give a brief heuristic description which shows
that infinitely many such doubly homoclinic solutions
arise for 5J0 in the case of p < 1. As 5{0, the point C
is moving down, i.e., toward x4 = 0; its image, there-
fore, travels along the spiral towards its center. In
addition to that, the spiral itself moves down, with its
center approaching x, = 0. In the case p < 1, when the
spiral is “tight” on the outside, the distance between
the point F,(C) and the center C of the spiral is much
larger than the distance O(b) from the center of the
spiral to the stable manifold {x, = 0}. This shows that
the point F,(C) runs wide circles around C (like a dog

around its master) and consequently will cross {x, = 0}
infinitely many times before C does, thus implying the
existence of infinitely many parameter values for
which there are doubly homoclinic connections. The
above argument can be made into a rigorous proof.
The existence of higher-order homoclinic connec-
tions can be shown in a similar way. We also point_out
that these multiply homoclinic orbits can be viewed in
the context of symbolic dynamics as the “escape
orbits”, i.e., the solutions whose corresponding se-
quence terminates at both ends, in analogy with the
escape in Sitnikov’s problem in celestial mechanics,
where a mass point can make any prescribed number
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of oscillations and escape in the past time, future time,
or both [Moser, 1973].

7. Caterpiilar solutions and Shil’nikov’s
periodic solutions

Numerical evidence indicates a close similarity
between the Shil'nikov solutions and the caterpillar
solutions. In this section, we point out the difference
and the similarity between the underlying geometro-
analytic origins for the existence of these two types of
solutions.

Caterpillar solutions have been discovered experi-
mentally [Sullivan & Zimmerman, 1971] and numer-
ically [Imry & Schulman, 1978). Their nature was
described in the introduction. What is important for us
in the present discussion is the fact that the caterpillar
solutions “make a turn” in R* (which in fact looks like
a 90-degree turn when projected into the
(#1, #2)-plane), i.e., the pendula exchange motion, in
the “shadow” of a bifurcated equilibrium solution. By
contrast, the Shil’nikov solutions experience a similar
exchange of motion, but it occurs near the saddle
point on the homoclinic connection. That this causes
one pendulum to stop and the other to “run” is clear
from the eigenvectors at the saddle point. Locally w*
is approximated by the unstable eigenvector. For small
k, ag= - min(a, b) + (k) and a; = - max(a, b) + O(k).
For b>a and a+b> 0 (the case a+b <0 is similar),
the unstable manifold is approximately

W¢ = (b - a0,k - a),07 + Ok,
and fora>band a+b>0
W =(0,a - b,0,0(a - B)T + Ok) .

The eigenvectors corresponding to the complex conju-
gate pair of eigenvalues are, for 5> a and a+b> 0,

Va1 = (0,a - 5,0, An(a - )T + Ok) ,
and fora>band a+b> 0,
Vn = (b - a,0,2,( - a),0)T + OKk) .

Therefore, near the Shil’nikov homoclinic connection,
trajectories approach the equilibrium point with one
pendulum nearly at rest, and leave with the other at
rest. Which pendulum rests depends on the relative
size of cos ¢, and cos ¢, and the sign of cos ¢, + cos ¢,.

The following figures show the (¢, ¢,)-plane for

various computed solutions. Figure 16 shows the
synchronous solution, which is a diagonal motion, and
the primary homoclinic solution, for I,=0.1kn (see
Fig. 10). The solutions on the period-doubled branch
show the typical caterpillar-type motion, with the 90
degree turn far from the saddle point. The doubled
homoclinic connection appears to avoid the eigenspace
of the complex conjugate eigenvectors, approaching
the saddle-focus along the eigenspace of the real, stable
eigenvalue.

Figure 17 shows the same plots for solutions at
1.=0.55kn. Here the homoclinic motion labeled 4 (see
Fig. 11) makes one turn near the saddle, and the other
near a second pair of equilibrium points. Homoclinic
motions B and C exist at a larger value of /, at which
the second pair of equilibrium points has disappeared
in a saddle-node bifurcation. These have one turn
which is like the caterpillar solution, and one which is
not.

Finally Fig. 18 shows solutions at I.= 0.975kr (see
Fig. 13). It is clear that the motions are almost
heteroclinic, with both turns near equilibrium points.

The similarity between the caterpillar solutions and
the Shil’nikov solutions is striking, but their nature is
different. Stated loosely, the distinction between the
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Fig. 16. Projections of the phase plane for various solutions from
Fig. 10. Equilibrium points are marked. A diamond indicates a
stable equilibrinm, a cross one with two stable and two unstable
cigenvalues, and a star an equilibrium with four unstable eigenval-

ues.
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Fig. 18. Projections of the phase plane for various solutions from
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Fig. 13. Markings are the same as in Fig. 16.

“caterpillars” and the Shil’nikov-type solutions is that
the former arise in the wake of a saddle-node bifurca-
tion of equilibrium solutions, while the latter live in
the neighborhood of a saddle-focus homoclinic loop.

Dynamics of Coupled Pendula 49

Acknowledgement

The numerical investigation presented here was
prompted by results of W. Liniger, which suggested the
existence of period-doubling bifurcations from the
branch of periodic solutions connected to the synchro-
nous solution.

References

Amerio, L. [1949] “Determinazione delle condizioni di
stabilita per gli integrali di una equazione interessante
Pelettrotecnica’, Ann. Mat. 4(30), 75-90.

Andronov, A. A, Vitt, E. A. & Khaikin, S. E. [1949] Theory
of Oscillations (Princeton Univ. Press).

Arnold, V. 1. {1983] Geometrical Methods in the Theory of
Ordinary Differential Equations (Springer).

Aronson, D. G., Doedel, E. J. & Othmer, H. G. [1991] “The
dynamics of coupled current-biased Josephson junctions
— Part II”, Int. J. Bifurcation and Chaos 1(1), 51-66.

Aubry, S. & LeDaeron, L. [1983] “The discrete Frenkel-
Koutorova model and its extensions”, Physica 8D, 381-
422,

Benedicks, M. & Carleson, L. [1988] “The dynamics. of the
Henon map”, preprint.

Beyn, W.-J. [1987] “The effect of discretization on homo-
clinic orbits”, in Bifurcation: Analysis, Algorithms and
Applications, eds Kupper, T., Seydel, R. & Troger, H.
(Birkhauser ISNM series, no. 79) pp. 1-8.

Conley, C. [1978] “Isolated invariant sets and the Morse
index”, CMBS 38 (AMS, Providence).

Doedel, E. I., Aronson, D. G. & Othmer, H. G. [1988] “The
dynamics of coupled current-biased Josephson junctions:
1”, IEEE Trans. Circuits and Systems 35(7), 810-817.

Doedel, E. J. & Friedman, M. J. [1989] “Numerical compu-
tation of heteroclinic orbits”, J. Comput. Appl. Math. 26,
155-170.

Doedel, E. J.,, Jepson, A. D. & Keller, H. B. [1984]
“Numerical methods for Hopf bifurcation and continua-
tion of periodic solution paths”, in Computing Methods in
Applied Sciences and Engineering VI, eds Glowinski, R. &
Lions, J. L. (North-Holland).

Feynman, R. [1963] The Feynman Lectures on Physics
(Addison-Wesley).

Glendinning, P. & Sparrow, C. [1984] “Local and global
behavior near homoclinic orbits”, J. Stat. Phys. 35(5,6),
645-696.

Griner, G. & Zettl, A. [1985] “CDW conduction: A novel
collective transport phenomenon in solids”, Phys. Rep.
119(3), 119-232.

Holodiniok, M. & Kubicek, M. [1984] “DERPER — An
algorithm for the continuation of periodic solutions in
ordinary differential equations™, J. Comp. Phys. 585, -
254-267.

Imry, Y. & Schulman, L. [1978] “Qualitative theory of the
nonlinear behavior of coupled Josephson junctions”, J.
Appl. Phys 49(2), 749-758.

Keller, H. B. {1977] “Numerical solution of bifurcation and
nonlinear eigenvalue problems”, in Applications of Bifur-
cation Theory, ed. Rabinowitz, P. H. (Academic Press,
New York) pp. 359-384.



A

50 M. E. Henderson et al.

Keller, H. B. & Jepson, A. D. [1984] “Steady state and
periodic solution paths: Their bifurcations and computa-
tions, in Bifurcation: Analysis, Algorithms and Applica-
tions, eds. Kupper, T., Mittelmann, H. D. & Weber, H.
(Birkhauser ISNM series, no. 70) pp. 219-246.

Levi, M. [1988] “Caterpillar solutions in coupled pendula”,
Erg. Th. Dyn. Sys. 8, 153-174.

Levi, M., Hoppensteadt, F. C. & Miranker, W. L. [1978]
“Dynamics of the Josephson junction™, Quarterly of Appl.
Maths. (July 1978) 167-198.

Maginu, K. [1983] “Spatially homogeneous and inhomoge-
neous oscillations and chaotic motions in the Josephson
Jjunction line”, SI4M J. Appl. Math. 43(2), 225-243.

Marcus, P. M. & Imry, Y. [1980] “Steady oscillatory states of
a finite Josephson junction”, Solid State Commun. 33,
345-349,

Mather, J. [1982] “Existence of quasi-periodic orbits for
twist homomorphisms”, Topology 21, 457-467.

Moser, J. K. [1973] Stable and Random Motions in Dynam-
ical Systems, Study 77 (Princeton University Press).

Ovsyannikov, I. M. & Shil’nikov, L. P. [1987] “On systems
with a saddle-focus homoclinic curve”, Math. USSR
Shornik 58(2), 557-573.

Sullivan, D. B. & Zimmerman, J. E. {1971] “Mechanical
analogs of time dependent Josephson phenomena”, Am.
J. Phys. 39(12), 1504-1517.

Tricomi, F. [1931] “Sur une équation differenticlle de
Pelectrotechnique”, C.R. Acad. Sci. Paris 193, 635-636.

Yakubovich, V. 1. & Starzhinskii, V. M. [1975] Linear
Differential Equations with Periodic Coefficients. (Wiley,
NY).

Zimmerman, J. E. & Sullivan, D. B. [1977] “High-frequency
limitations of the double-junction SQUID amplifier”,
Appl. Phys. Lett. 31(5), 360-362.



