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Morse theory for a model
space structure.

Mark Levi*
Boston University

In this note we outline the results of qualitative analysis of a natural perturbation of
the classical problem of dynamics of a free rigid body in space. Our aim here is to describe
a bifurcation effect previously unobserved in flexible space structures. To that end we
choose a maximally simple model to make the ideas as transparent as possible with the
minimum of technicalities.

By coupling two classical and well-understood problems~a free rigid body in space and
a damped oscillator we produce a dynamical system which can be viewed as the simplest
meaningful model of a flexible body, such as a spacecraft with flexible attachments. In
fact, our system can be viewed as a one-mode truncation of a flexible structure with
infinitely many degrees of freedom. The phenomena described here are certain to occur in
such infinite degree of freedom structures as well.

One such surprising phenomenon is the “symmetry-seeking” property of the model,
manifesting itself in the existence of purely rotational asymptotic motions in which the
effective ellipsoid of inertia of the rotating body becomes rotationally symmetric after the
internal vibrations have dissipated, for a whole interval of angular momentum values.
Moreover, the axis of rotation of the system will not coincide in these motions with any of
the symmetry axes of the system. Finally, the deflections of the elastic part of the system
will be shown to be independent of the value of the angular momentum in a certain range.

It seems to be a comnmon belief that any elastic structure with internal dissipation
tends, in the absence of all external forces, to a pure rotation with a constantt angular
velocity around one of the axes of the effective ellipsoid of inertia (cf. Kaplan [5]). We show
that, generally speaking, this is false, and propose a condition under which the asymptotic
motions indeed are pure rotations.

In the presence of internal dissipation the flow in the reduced state space the system
is almost always a Morse flow, that is, every motion tends to an equilibrium, with the
energy playing the role of the Lyapunov function. Physical implications of this transparent
geometrical picture may seem rather surprising; these are described in detail below.

1. Introduction

The problems of dynamics of non-rigid structures in space have been studied ex-
tensively, notably, by Poincaré, Lyapunov, Kovalevskaya, and more recently by Chan-
drasekhar [4] and others. These remarkable studies deal with the equilibrium shapes of
self-gravitating fluids.
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Since the early 1960’s the new interest in related questions arose in connection with
the development of artificial satellites, and more recently, in the context of large flexible
space structures.

We mention in passing a very interesting problem of the motion of a rigid body
with a fluid-filled cavity; for the ideal Auid with no bubbles, the problem has been solved
completely over 100 years ago [8]. As it turns out, the motion of the fluid-filled body is
indistinguishable from that of a rigid body with an appropriate tensor of inertia(!).

Recent ideas and methods of dynamical systems have not yet exercised their full power
on this class of problems, and have only started penetrating this particular area. Very
recently, various aspects of dynamics of flexible space structures have attracted attention of
mathematicians. Among the new studies are stability proofs of the “least energy rotations”
based on Arnold’s ideas [2],[7], bifurcation analyses of rotating systems consisting of a rigid
part with flexible attachments [3), [7], studies of the dynamics of coupled rigid bodies; the
references to this subject can be found in the present volume.

The Hamiltonian approach of Arnold [2] has been carried over to some models (7] and
the Lagrangian approach was developed [3].

We mention also a somewhat related work starting with Kolodner [1], [6], [9] on the
equilibria and dynamics of moving chains.

Our understanding of the full dynamics of flexible space structures has been very
limited. Almost all existing results on the qualitative aspects of dynamics fall into the
following categories:

e The characterization of “rigid modes” in some models, i.e. the classification (in a
very few special examples) of possible equilibrium motions and of their bifurca-
tions (3].

¢ Proof (in a few examples) of stability of rigid rotations in the least energy case
(7).

e Proof (in some special cases) of the trend to a pure rotational motion [3].

While analyzing the effects of infinite-dimensionality of the beam, the body-beam
model (3] deliberately excluded the effects of spatial orientation. In this note, we give a
complete description of a model problem possessing the full rotational freedom.

2. Description of the model

We consider a rigid body, Figure 2.1, whose tensor of inertia is I, and we orient the
coordinate axes ,y,z along the eigendirections of I, denoting the corresponding eigen-
values, i.e. the moments of inertia, by I; > I, > I;. Let a mass m be constrained to
slide along the z—axis and let it be a subject to an elastic restoring force k(x — z¢) with
the spring constant k. Here z denotes the position of the mass along the z-axis and z¢
is the equilibrium position of the mass when the entire system is at rest. To reduce the
technicalities to a minimum, we also assume the center of mass of the rigid body to be
fixed in space—or alternatively, we could take another mass m; = m positioned symmetri-
cally with the first mass, with symmetric initial conditions. Let cZ be the damping force
acting on the mass. We emphasize that the linearity assumptions on the elasticity and the
dissipation have nothing to do with the phenomena described below; these assumptions
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are chosen to bring out the essential features unobstructed by inessential technicalities.
The equations of motion of the system are given by

{M+wx]\l=0, 2.1)

i+ ek + k(z — 20) = (Wi + i)z,

where M = Jw +mr x (r; 4w x 1) is the total angular momentum of the system expressed
in the body frame, w is the angular velocity of the rigid body expressed in the body frame
and r is the position vector of the mass in that frame. This form of equations follows at
once from the general Lagrangian aproach [3]; one can also derive them directly. The first
equation, for instance, expresses the conservation of the angular momentum but written
in the non-inertial frame of the rigid body. Since the vectors r and r; are parallel, we have
M = Iw + mr x (w x r) = I(z)w, where I(z) = diag(I1, I, + 2%, I; + z?) is the (variable)
tensor of inertia of the whole system; we will refer to it as the effective tensor of inertia.
The equations of can now be written as

dilt-[I(z)w] +wx I(z)w=0 (2.2)
i+ct+k(z —z9) = (w?+wi)z,
where we took the mass m = 1, or more explicitly,
Io +w x Tw + 2ziw! + 220! + 22w, (0, —w3,wy)T =0 (2.3)
I+ cz+ k(z - zq) = (Wi + wd)z, -

where w! = (0,wz,w;3)T. Physical meaning of the terms in the first equation of (2.3) is as
follows.

— the third term gives the Coriolis torque exerted by the mass upon the rigid body.

— the fourth term gives the torque created by the inertial force due to the angular
acceleration of the rigid body

— the last term gives the torque created by the centrifugal (inertial) force.

Figure 2.1. A model problem.
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The right-hand side term in the second equation in (2.3) gives the centrifugal inertial
force acting upon the mass exerted by the constraint of staying on the z—axis.
Energy of the system is given by

1 1 1
E = ;(Iw,w) + E[x2 + (W + i)+ Ek(z — z9)?,
the expression in bracket giving the kinetic energy of the mass. The dissipation relation
E = —ci?

can be checked either directly or from the general principle of Routh (cf. [3]). From
the left-invariance of the Lagrangian, i.e. from the independence of the kinetic energy of
the position of the body relative to the inertial frame, it follows that |M]| is a conserved
quantity; in the presence of dissipation (¢ # 0) it is the only nontrivial conserved quantity.

3. Dynamics and Bifurcations

In this section we describe the asymptotic dynamics of the system and point out some
interesting “symmetry-seeking” effects.

The first step in the direction was made in [3], although the first heuristic discussion
is mentioned already in [5]. As it turns out, that heuristic discussion is valid only for
moderate values of angular momentum.

3.1 Asymptotic behavior.

Theorem 3.1. Every solution of eq. (2) tends to the zero dissipation set (the set of rigid
configurations)
{(z,z,w): £ =0},

if the damping ¢ > 0.

Proof. We have proved a similar theorem in [3] for an infinite- dimensional system but
with only one rotational degree of freedom; the main difference here is that the system has
a full rotational freedom.

We have to show that given any € > 0 and any initial condition Zo = ((0), £(0),wo),
there exists T = T(Zy,¢) such that for all t > T the solution Z(t, Zy) = (z,z,w) stays
in the e-strip around a (z,w)-hyperplane in R® = {(z,#,w)}. Assuming the contrary, we
would have an € > 0 and Z; such that the solution starting at Zg would venture repeatedly
outside the strip || < €. For || > € we have E = —ci? < —ce?, and thus we conclude
that Z(t) can spend only finite time outside the strip |¢] < ¢; since € > 0 was arbitrary,
z(t) will repeatedly come arbitrarily close to {&# = 0}. Consequently the strip § < & <
will be crossed infinitely many times. Since the amount of energy lost in each crossing is
greater than some § > 0, we conclude: E — —o0, a contradiction.

We have used the same argument in an infinite-dimensional setting in {3]. The above
result says that the pendulum stops oscillating, but leaves open the question on the limiting
motion of the system as a whole. This question is answered in the next statement.
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Theorem 3.2 If I # I3 then for any initial condition in eq. (2.2) we have w(t) > weo =
const, £(t) — zo0 = const, ¢ — 0, with the limiting values satisfying

k.‘l)g

2 2

I(Zoo)Woo = Adogy  Too = P —1
—wi—

We conclude that eq. (2.2) 13 a Morse system for I, # I;. Proof. The proof is the same
as for a similar theorem in {3].

Remark. - It is important to note that the apparently reasonable conclusion w -
const is false in general: if I; = I3, a “typical” solution tends to z — const, w —
(w1,acosb(t — tg),asinb(t — tg)) with constant a,b,w;. Physically, this says that even
in the presence of elasticity some structures need not tend to a pure rotation but rather
may tend asymptotically to a precessing motion. One expects, however, that this is an
exceptional phenomenon; in the case I, = I3 at hand it is — in fact, the asymptotic
precession is nongeneric and in fact, is of codimension 1, as theorem 3.2 shows. It should
be pointed out that this phenomenon is due to a “residual rigidity” in the system: the
motion of the mass is constrained to a line. Were we to relax this constraint (thus also
increasing the dimension of the problem), we would have eliminated the possibility of a
limiting motion with precession. It should also be pointed out that in the presence of
the symmetry I = I3 one can carry out a further reduction; in the reduced phase space
the system tends to an equilibrium and is a Morse system (which it is not in M, in the
symmetric case).

The model at hand suggests that, as a general principle, in order to eliminate the
possibility of an asymptotic precession in a flexible space structure it suffices to assume
that any change in the angular velocity of the structure leads to a deformation of some
flexible part of the structure. To illustrate this point on the present model we note that
the last condition fails precisely in the case I, — I3; indeed, for a precession we have
w = (0,—absinbt,abcos bt) # 0, which produces no change in the inertial forces acting
upon the mass and thus no deformation; had the constraint of the mass to the r—axis been
relaxed, the precessional motion would not have existed as an asymptotic state.

3.2 Global dynamics

Theorem 3.2 above describes the fate of an individual solution, but leaves open the
question of global dynamics of the system and of its bifurcations — that is, it does not say
what happens as one changes the initial consitions or the parameters. In this section we
describe the effect by which the system “seeks out” a symmetry which persists for an open
interval of parameter values.

Before stating the result, we note that the phase space RS is foliated by the invariant
surfaces of constant angular momentum, and it suffices therefore to analyze the flow of eq.
(2) restricted to the angular momentum surface

My = {(,2,8) : M| = | I(z)e] = ),

for different values of the constant u. Topologically, M, = 52 xR2. We fix the magnitude p
of the angular momentum and choose the Hooke’s constant k of the spring as the parameter
(the choice of y as the parameter instead of k would amount simply to a rescaling of time).
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Theorem 3.3 Fiz |M| = p, and assume that I; > I + 23, i.e. that the effective principal
moments of inertia I) > I, + 23 > I3 + z} of the undeformed system are ordered in the
same way as the moments of inertia I; > I, > Iy of the rigid body. For any k in the
interval

0<k< -1‘12(1 - )=k, (3.1)
1

To
Vi -1
the system admits a rotation around two azes y',y" in the (z,y)-plane not coinciding with
any of the principal inertial azes  or y. Moreover, the position T, of the mass in such a
limiting motion is independent of k. This position is such as to make the effective ellipsoid
of inertia rotaionally symmetric around the z—-azis. The same statements hold when one
replaces the y-azis with the z-azis, the Ty-plane with the zz-plane, I with I3, ky with

z = —;—%(1 d ﬁ)_l) etc..

Proof. We start by defining z., by the symmetry condition I} = L(z) = 12 + z2,,
i.e. by
2 =0 -1, >zl
Next we define the angular velocity weo; in order that eq. (2.2b) hold for the constant

z(t) = o0, it is necessary that

Too = Tg
w§+w§=k———;—
o0

> 0;

the last inequality follows from the assumption made in the statement of the theorem. For
eq. (2.2a) to hold one must have w x I(Zeo)w = 0, i.e. there must exist A > 0 such that
I(zeo)w = Aw, or (lywy, Lywa, (I3 + 22, )w3) = AMwi,ws,w3). Choosingws =0, A =1I;, we
satisfy eq. (2.2a); eq. (2.2) is thus satisfied by any w = (w;,wz,0) with

w§=k£°°z—.—-ﬂ>0 and z=z,=105 — L. (3.2)
oo

Recalling the angular momentum constraint |M| = p, we obtain w} + w3 = F4r. Thus if
1

>0 (3.3)

then w; = V4 and w, given by eq. (3.2) satisfy the equations of motion (2.2). Condition
(3.3) is in turn equivalent to (3.1), q.e.d. .

3.3. Bifurcations and stability.

It is not hard to show that for certain values of the parameters our system has seven
distinct equilibrium rotations, among which three can be stable; all these are depicted in
figure 3.1. (We identify, of course, the rotations around the same axis in the opposite
direction.) This is to be contrasted with the well-known situation of only three rotations
for the rigid bodies with distinct principal moments of inertia. For large k the spring 1s stiff
and the system has three equilibrium rotations only, just as a rigid body. As k is decreased
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it passes through two bifurcation values k, > k, > 0 specified in Theorem 3.1. At k, the
rotational equilibrium around the z-axis undergoes a pitchfork bifurcation giving rise to
two additional rotations around the z' and z"-axes which bifurcate off of the z—axis and
which lie in the zz-plane. As k decreases further, these axes rotate towards the r—-axis as
shown in figure 3.1. As k decreases through the next value ky < k., two axes of rotation
y' and y" bifurcate off of the y-axis and rotate in the zy-plane towards the r—axis. The
stability picture is summarized in the following table. We note in particular, that the
“saddle” rotation around the y-axis splits into two saddles and a sink — as it turns out,
this sink is a sink since it (locally) minimizes the energy on the surface M,. Similarly,
the z—rotation undergoes a pitchfork bifurcation and splits into a saddle and two unstable
foci. The detailed analysis of this picture will appear elsewhere. From the more practical
point of view one might want to change x rather than &; it is not hard to see, in fact, that
the bifurcation diagram with y as a parameter is obtained from the diagram in figure 3.1

by relabeling the k-axis into the y-axis and by reversing the direction of the parameter
axis. )

! A
r-rotation k
L

y-rotation

z—rotatim

| ky

Figure 3.1. Equilibrium rotations of the system in M,
for k < k, and the bifurcation diagram.
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k
0<k<ky ky <k <k: k, <k<oo
axis
z 0
y 0 1
v,y 1 I
r4 1 2
zl’ 2" 9 _
Table 3.2. The entries in the table give the Morse index
of the equilibrium points of the flow (2.2) constrained to M,,.
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