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1 The Problem and the Result

In this note we show the existence of at least three closed orbits for a charged
particle moving on a torus under the influence of a magnetic field. The proof calls
for use of Moser’s theorem on density transformation; we provide an alternative
proof of this theorem, based on the idea of diffusion. For completeness we give
a proof of the uniformization theorem for the case of a torus (see the appendix)
based on some physical considerations that go back to Riemann, as well as using a
recent result of Avellaneda and Lin (also Moser and Struwe).

The result of this note gives a partial solution to a problem posed by Arnold
in [1] concerning the existence of at least three closed orbits of a particle whose
trajectories on the 2-torus have a prescribed geodesic curvature, the latter computed
relative to a given Riemannian metric. We prove this result by reducing it to an
equivalent problem of a charged particle moving in the covering plane of the torus
in the presence of a magnetic field perpendicular to the torus, under the influence
of a potential force:

(1.1) Z4+iBx,y)z24+VV(x,y)=0, z=x-+1iy.

Throughout this note we assume the strength B(x, y) of the magnetic field and the
potential V (x, y) to be smooth and periodic with respect to a lattice in the covering
plane: B(z +ne| + nye;) = B(z) and V(z + nie; + nye;) = V(z) where ey, e, is
a basis in R?, and where z = (x, y), n; € Z.

We will prove the following:

THEOREM 1.1 Assume that the energy value E, the magnetic field B(z), and the
potential V (z) satisfy

IVV|
VE=V'

Then there exist at least three distinct periodic orbits of (1.1) with energy E:

(1.2) min B(z) > max
R2 R?

(1.3) %|z|2+ V(z) = E.
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Remark 1.2. Condition (1.2) amounts to the requirement that all trajectories with
the energy E are bent in the same direction, i.e., that the Lorentz force i Bz, always
normal to the velocity z, exceed in magnitude the potential force VV : B|z| >
|VV|. The last inequality together with the energy relation (1.3) produces (1.2).

In his 1987 paper Ginzburg [6] proved the existence of closed orbits for suf-
ficiently large magnetic fields. Ginzburg’s proof is based on the observation that
for B large enough (using the notation of (1.1)) a Poincaré map of the flow has
a global generating function on the 2-torus.! The assumption (1.2) in the present
note is somewhat weaker because it does not guarantee the existence of a global
generating function. In the absence of such a function we are led to using the result
of Conley and Zehnder to prove the existence of periodic orbits. This note allows
intermediate values of B, but still requires the lower bound (1.2) on B. Removing
this bound altogether remains an open problem. We mention in this connection that
Ginzburg has observed in [7] that the existence of (at least one) periodic orbit on
the 2n-torus in an arbitrary magnetic field and with an arbitrary metric for almost
all energy values follows from the work by Hofer and Zehnder in [10]. For more
recent related results and generalizations we refer to [8, 9].

Remark 1.3. After this note was finished, it came to my attention that an outline
of the approach taken here had already been mentioned by V. Kozlov in a personal
communication to V. Ginzburg, as mentioned in [6]; see also [11].

1.1 A More General Formulation

We show in this section that the seemingly more special case (1.1) of a particle
in the magnetic + potential field in fact includes the general case of an arbitrary
Riemannian metric with magnetic field (see [7]):

(14) 6/(/L_2+L1>dt _ af (A@)d. &)

where A is a positive definite matrix and a(g) = col(a;, a3); both A and a are
1-periodic in both components of g, i.e., are defined on the covering plane of the
torus T; = R? modd 1.

By the uniformization theorem? there exists a uniformizing map g = F(z)
turning the given Riemannian metric on T into a conformally flat metric on the
“skewed” torus T, = R? mod (n;e; + nye;) with the moduli basis e; and e;:
(Adq,dq) = (dFTAdF dz,dz) = A%(2)(dz, dz). Thus A is periodic with respect
to the lattice generated by e; and e,. We note that the uniformizing map F ' maps
the square lattice {(n{, n,)} onto a skew lattice {n,e;+nse;} : F(z+n e, +nye;) =
F(z) + (n1,n7). With an obvious normalization (dilation and scaling) we can

BN

+{a(g), 4))dt =0,

lActually, the results in [6] are more general, dealing with arbitrary even-dimensional compact
manifolds without boundary.

2 See, e.g., ([14]). We give a concise, almost self-contained proof of the theorem in the appendix.



PERIODIC MOTION IN MAGNETIC FIELDS 1167

achieve e; = col(1, 0), so that the lattice depends on two moduli, the coordinates
of e5.

In the new “isothermal” coordinates z the variational problem takes the form

(1.5 5 [ 00t + i, 2)ar =o.
The Euler-Lagrange equations

d z
1.6 —{r= b, — b))z —|z|VA =0
(1.6) dt( lé|)+(z )z — 1zl

inherit the invariance of the variational problem under arbitrary rescalings of time.
We remove this redundancy by selecting solutions with the time parametrization
given by |z| = A(z). With such a choice, equation (1.6) turns into equation (1.1)
where B = curlb = (b)), — (b)), and V = —2%/2. We also note that energy
conservation z2/2 + V(z) = E with E = 0 amounts to the condition |2| = A that
we have selected. We thus conclude:

THEOREM 1.4 Any solution of the variational problem (1.4) corresponds to a zero-
energy solution of equation (1.1), where V.= V(—A%/2) and A (z) is a conformal
factor of the above discussion.

As a consequence of the above remarks and of the main theorem, we have the
following:

COROLLARY 1.5 The variational problem (1.5) on the torus T, = R*> modne; +
n2€; has at least three periodic solutions if

. IB (Z) l 3b2 8b1
(1.7 min >~/2 where B=curlb = — — L,
) IVA(2)] dx  dy
In conclusion, equation (1.1) of a charged particle in a magnetic field is slightly
more general than the variational problem (1.4).

2 Proof of Theorem 1.1

2.1 Plan

(i) Following Arnold [1] we define the mapping of the configuration 2-torus
as follows. Restrict our attention to a fixed energy surface (1.3) once and for all.?
Starting with an arbitrary point z, we shoot the particle in the x-direction and record
its position at the first moment when its velocity z turns by 27, calling this new
position ¢(z), Figure 2.1; the map ¢ is well-defined if (1.2) holds, as we shall see
later.

(i) We will show that the map ¢ preserves a Liouville measure, p(x, y)dA,
where dA = dx dy, and that ¢ fixes the center of mass of the torus with respect to
this measure.

3 This energy surface is a 3-torus; we choose x, y, and § = arg 7 as the coordinates.
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0(z)

dA d6,=dA d6,

< d60= adt

dA

FIGURE 2.1. The invariant measure p(z) of the section map.

(ii1) Since the measure p dA is generally not Lebesgue, the Conley-Zehnder
fixed point theorem [4] is not directly applicable. With a proper choice of a “ho-
mogenizing” diffeomorphism % : R? — R2, the conjugate map ¢ = hog o h™!
does become Lebesgue measure-preserving, and we will show furthermore that v
preserves the center of mass with respect to the Lebesgue measure. The homog-
enizing diffeomorphism 4 is provided by a theorem of Moser [12]. We will also
give an independent proof of Moser’s theorem; this proof is motivated by a physical
argument based on heat flow.

2.2 The Angle as New Time
0.

We introduce the polar coordinates r and 8 on the velocity space via 7 = re'’;
from the conservation of energy we obtain the speed

r=+y2(E—-V(®@)=v(

as a function of the position. The equations of motion on the energy torus become

2.1 z = v(z)e'?
' 0=w(z0),
where
(2.2) E—B—Jmizf4W
v

The assumption (1.2) amounts to || > 0; we assume without loss of generality
that

—w(z,0)>c>04

*The alternative case reduces to this one via the change of t to —1.
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As a consequence, the -advance maps (pg(; are well-defined for any pair 8y < 6.
Choosing now 6 as the new time, we rewrite (2.1) in the form

dz _ v(@) 4

0~ 0G0

We observe that the flow of (2.1) preserves the Lebesgue measure dx A dy A d6,
since the divergence of the vector field (2.1) is computed to be zero. The reduced
equations (2.3) preserve the measure w(z, 8)dA, where dA = dx dy. Indeed, the
Lebesgue volumes swept by the top and the bottom of a flow tube in time d (see
Figure 2.1) by the flow (2.1) are the same since that flow is divergence free; these
volumes are dAgwodt = dA; w;dt (Q.E.D.), where dA is the Lebesgue area
of the base of the tube, implying the desired wydA¢ = @, dA;. A more formal
restatement of this proof: using the divergence theorem, and letting T be the flow

tube with the top and bottom boundaries D; and Dy, D; = @Dy at § = 6, and
0 = 0;, we get

O:%/f[dkd@:f/ —w(z,eo)dk+//w(zv91)df\-
T Dy Dy

We conclude that the Poincaré section map ¢ = @2™ preserves the measure
w(z, 0)dA and thus the normalized measure as well:

w(z,0)
2.4 =" 7
(2.4) p(2)dx @ 0

More generally, for any slices ¢ = « and ¢ = B we have measure preservation
between slices: f f p Pz, )dr = f fw,s p P(z, B)dA, or infinitesimally

2.5) p(z, @) = p(phz, B) detdgf (z) .
Remark 2.1. The mean value [w(z, §)] = —[B] is #-independent.

(2.3)

Indeed, the mean value of the ratios V, /v and V, /v entering w (see (2.2)) is
zero since these ratios are the x- and y-derivatives, respectively, of the periodic

function 2/ E — V.

2.3 Center of Mass Is Fixed by ¢ in Measure p(z, 0)dA

Recall that ¢z denotes the solution of (2.3) with @5 = id. Consider the position
of the center of mass carried with the flow:

Z(6) = / / 20(z2, )dA,

050
where Q is the fundamental domain of the lattice, Q = {ue; + ve, : 0 < u <
1,0 < v < 1}. Our goal is to show that

(2.6) ZQ2m) = Z(0).
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FIGURE 2.2. Q = UT,cp2¥(Q)N Q.
Wishing to find Z'(8), we substitute z = ¢§ (w), obtaining

Z®) = /f piw(p(piw, 6) detdp§(w))dAr
Q

The expression in parentheses is 8-independent, as follows from (2.5). Differenti-
ating by 6, using (2.3), and returning to z = (pg (w) results in

7'0) = ¢ // (Z) (2, 6)dA
= e’e[B]' f/ v(z)d) = €°[B]™ 1// v(z)dA,

where the last equality follows from (i) the fact that ¢ Q is congruent to Q modulo
integer translations and (ii) the invariance of v(z) under these translations. Integra-
tion by 8 gives (2.6).

2.7

2.4 Homogenizing the Invariant Measure

To apply the Conley-Zehnder fixed point theorem [4, corollary 2] we introduce
new variables in which the invariant measure p(z)dA turns into the Lebesgue mea-
sure A. We thus are looking for a diffeomorphism % of the covering plane such that
[fpp@dxr = [f, (py 4 for any domain D or, equivalently, for a solution 4 of the
nonlinear PDE

(2.8) deth'(z) = p(2).

With such 4 the conjugate map ¥ = h o ¢ o h~! preserves the Lebesgue measure.
The desired map & exists by a theorem by Moser [12]. We give here a differ-
ent proof of this theorem, which may be of independent interest, for the particular
case of a torus. As a side remark, we note that Moser’s result is more general
because it has been carried out in the case of an arbitrary Riemannian manifold
without boundary; for the case of manifolds with boundary we refer to Dacorogna
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and Moser [5], where the existence of a map fixing the boundary and having a
prescribed Jacobian determinant is proven. We mention also a remarkable combi-
natorial proof due to Burago and Kleiner [3] that gives a deeper insight into the
problem of regularity (proving, e.g., that for some continuous p there is no bi-
Lipschitz map A satisfying equation (2.8)).

Construction of & Satisfying (2.8)

Our construction comes from a simple idea: Consider a homogeneous porous
material permeated by gas of variable density p(z, t). The gas diffuses from denser
to sparser areas in some way, to be specified later. The diffusion will equalize the
density from its initial distribution p(z, 0) = p(z) to its final constant density state
lim, ., p(z,¢) = [p(z)] = const = 1 (by fixing total mass). The desired map
h is simply the assignment of a particle’s initial position to its final position. The
conservation of mass will then assure that the original and final areas d Ay and d A |
of a “blob” have the same mass: pdAg = 1-dA,, ie., p =dA/dAg = deth’, as
desired. We make this heuristic idea more precise.

We define p(z, t) as the solution of the heat equation

(2.9) o = Ap with the initial condition p(0, z) = p(z),

and with p(z,t) thus specified, define the motion of “particles” via the
(nonautonomous) ODE

1
(2.10) z=—==Vp=-Vinp,
‘ 1Y

and finally define 4 := z,—¢ > 7, for solutions of the last ODE.> This completes
the construction of #; it remains to prove that 4 is well-defined and that it solves
the PDE (2.8).

THEOREM 2.2 If p € C*(T»), then the map h defined above is a diffeomorphism
and it solves the partial differential equation (2.8).

Remark 2.3. (See [5]) Solutions to (2.8) are nonunique and can be changed by an
area-preserving diffeomorphism g, det g = 1: If £ satisfies (2.8), then so does goh.
This freedom in the choice of a particular 2 manifests in much unused freedom in
our diffusion construction. For instance, the same idea works with anisotropic
diffusion given by a positive definite matrix A (allowed to depend on z) and with
an arbitrary equation of state p = f(p) (where p is pressure) with a monotone f.
The evolution of the density and the motion of the particles would then be given by
or =div(AVp), p= f(p),and z = —%AVp, respectively. The flow thus defined
still preserves the measure p.

3 The factor 1 /p is required to respect the conservation of mass (which is equivalent to (2.8)):
div(pv) = —div(Vp) = —Ap = —p, so that the mass conservation p; + div(pv) = 0 is satisfied.
In other words, the ¢-advance map of (2.10) carries the measure p(z)dX into the measure p(z, t)dA.



1172 M.LEVI

PROOF OF THEOREM 2.2:

(i) h satisfies (2.8).
The key point is the observation that (below p, = Vp)
p:-2 _Ap_p}

d
Elnp(h’z, 1) = 2y >
@2.11) po P po P

-(0(2) ().

where p = p(h'z, t) throughout. On the other hand, the Jacobian aa—zh’ z=H(,2)
satisfies the linearization of (2.10):

2.12) LT _(&> H,
at P/,
and thus by a theorem of Abel
d
(2.13) £ Indet H = —tr(&> :
dt o/,

Comparing this with (2.11), we conclude that %(p(h”z, tydet H) = 0. Since
det H(0, z) = 1, we have

p(z,0) = p(h(z),00) deth’'(zx), h(z) =h>(2).

This becomes (2.8) once we recall that p(z, 0) = p(z) and observe that p(z, 0c0) =
[p] = 1.

(i1) h(z) is a diffeomorphism.

First, 1°°z = lim,, o, ¢’z is well-defined since the integral in

* p.(h°z, s)
o phz,s)

converges because the integrand decays exponentially in s since all the derivatives
of the solutions to (2.9) do and since

o(z, 1) Zinn,o >0 VzandVr > 0.

Differentiability (and invertibility) of 2°°z follows from considering the Jacobian
H(t,z) = 0,h'z, which satisfies (2.12). Since the coefficient matrix of (2.12)
decays exponentially, we conclude that H(o0) = lim,_, o H(¢) < 00; moreover,
det H (c0) = exp f0°° tr(p,/p)ds > 0O since the integral is finite. We showed that /1
is a uniform limit in C! of diffeomorphisms 4', and thus is itself a diffeomorphism.
The proof of Theorem 2.2 is complete. 4

Having thus constructed /2, we show the conjugate map 1y satisfies the condi-
tions of the Conley-Zehnder theorem. The property dety = 1 is obvious (from
(2.8) and (2.5)), and it remains to show that y fixes the center of mass of Q.
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2.5 Map ¥ = h o ¢ o h™! Fixes Center of Mass of Q

Notation. For a measurable set S, we denote
[S]=//zd)», [S]p=//zp(z)dk, and 8(S) =[S]—[h'S],.
s s

We prove that the Lebesgue center of mass is preserved under (/8

(2.14) [Ql=1[vQ].

To that end, consider the relative position of the centers of mass with respect to dA
and p dA:

(2.15) 5(Q)=101-[r""01,.
LEMMA 2.4
(2.16) 5(Q) =8y (Q)).

PROOF OF (2.16): The proof relies on the property # o T® = T™ o h, where T®
is the integer translation by n = n,e; + n5e; in the z-plane. Let Q, = T"(Q. We
have

(2.17) vo=Jv@no..

neZ?
Since the union is disjoint, we obtain by using §(T"S) = §(S) for any measurable
set S in the second step,

SWQ) =) s(WoNQw = 8T "yQ)N Q) =5Q),

neZ? neZ?
where the last step uses the fact that Q is the disjoint union of the sets "y (Q)nN
Q. The proof of (2.16) is complete. 0

Finally, to prove (2.14), we rewrite (2.16) as

(2.18) [Q1-[¥vQl=[r""01, — [h'¥Ql,

and show that the right-hand side vanishes. Viah~' o ¥ = ¢ o h™!, the right-hand
side becomes

(2.19) ('01, — [ph™' 0],

Observe that the sets #~'Q and Q are congruent modulo T™ since 4 is the lift of
a toral isomorphism. According to the lemma below, (2.19) does not change upon
replacing A~' Q by a congruent set Q; (2.19) becomes

[Ql, —[¥Ql, =0,

the last equality following from the preservation of the center of mass (2.6). The
proof of (2.14) is complete modulo the following lemma.
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LEMMA 2.5 If a measurable set S C R? is congruent to the fundamental paral-
lelogram Q modulo T™, n € 72, then for any lift ¢ of a toral diffeomorphism we
have

(2.20) (81, — (¢S], =[Q, — [¢Ql, .

PROOF: With n € Z? define S, = S N Qy, and observe that S = | Sy (using
that Q is a fundamental domain), and that the union is disjoint. We have

(2.21) (81, = D [Salo = [UT7"Sa], + an/ pdr.

neZ? T-1S,

Similarly, we have

e2) sl = Ylesid, =[UT e8], + Yo [ par

nEZ2 T_“(pSn

We substitute JT™S, = Q and | J T "¢(Sn) = (T ™Ss) = ¢(Q) for the
domains of integration in the integrals in (2.21) and (2.22). Observe also that the
last terms in (2.21) and in (2.22) coincide since T o = @ o T and since ¢ preserves
the measure p dA. Subtracting (2.22) from (2.21), we obtain (2.20), and the proof
of Lemma 2.5 is complete. U

Appendix: Uniformization

A.1 Formulation.

In this subsection we give a short proof of the existence of a transformation in
which the metric becomes conformally flat, i.e., conformal to the Euclidean metric.
The proof uses a recent result of Avellaneda and Lin.

Below A(z) stands for a positive definite 2 x 2 matrix smooth in z on the cov-
ering plane of a torus.

THEOREM A.1 For any Riemannian metric ds* = (A(z)dz, dz)onthetorus T| =
R? mod (m, n), there exist

(i) two real numbers (the moduli) a and b defining the torus T, = R?
mod me; + ne; withey = (1,0) and e; = (a, b), b # 0,

(i) a positive scalar function A(z) > 0, and
(iii) the map w = F(z) suchthat F : T — T, and

(A1) ds* = (A(2)dz, dz) = A(2){dw,dw), dw = F'dz,
or equivalently, by manipulating A = M(F')TF":

(A.2) FATYFY =711,

or, in the notation F = col(u, v) and (w, w') 4-1 = (A~ w, w'),

(A.3) (Vu, Vu) 4,21 = (Vu, Vo) ;o1 =17, (Vu, Vo)1 =0.
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A.2 Proof of the Uniformization Theorem
Local Construction of the Map F

The desired transformation F = col(u,v) = (u,v)" is constructed from a
physical argument as follows. Let us treat the plane as a heat-conducting medium
in which a steady temperature ¥ = u(z) is maintained. The medium is anisotropic:
The heat flux f = —SVu, where § > 0, is a symmetric (conductivity) matrix, to be
chosen later according to the Riemannian metric. We define the conjugate function
v as the heat flux through a curve ending at z,

z z
V(@) = —/ (S§Vu) - Nds :/ (JSVu) -Tds where J = (_(1) (1)),
0 0

differentiation gives

(A4) Vv =JSVu.

For v to be well-defined, the integral must be path-independent:
(A.5) divSVu =0;

i.e., u has to solve the Beltrami equation.

Our choice of § is dictated by the need to satisfy equations (A.3). These equa-
tions are equivalent to one matrix equation

(A.6) VA~IVy = J(VA~Vu)

since both express the orthogonality and equality of (Euclidean) lengths of the
vectors vA~! Vu and v/ A~! Vv. Comparison of equation (A.6) with equation
(A.4) forces JS = VAJVA-T, or S = (J-IWA J)VA-T = /et A A~!, where
the last step uses the lemma in the next paragraph. We thus showed (modulo the
next lemma) that with such a choice of S and with 1 and v defined as above, the
map F uniformizes the metric, i.e., satisfies (A.3). This construction provides a
local existence of F'; one just needs to choose a solution u of the Beltrami equation
with Vi # 0 in a neighborhood of a point.

LEMMA A2 Let M > 0 be a2 x 2 real (symmetric) matrix. Then

(A.7) J'MJ =M"det M.

PROOF: If det M = 1, then (A.7) is evident from the fact that M is a hyperbolic
rotation with mutually orthogonal eigendirections and with reciprocal eigenvalues
which the conjugation by J permutes, resulting in the inverse matrix. The general

case of det M # 1 reduces to the last one by rescaling N = M/+/det M, so that
detN = 1. O
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Global Part

We have to show that there exists a solution u of equation (A.5) defined on the
whole of R? such that F = col(u, v) is a global diffeomorphism of the covering
plane of T onto the covering plane of another torus T,. According to [13, 2],
given any linear function ax + by there exists a periodic function p(x, y) such that
u = ax + by + p(x, y) is a solution of (A.5). In particular, there exists a solution
of (A.5) of the form u = x + p(x, y). We note that for this solution Vu 7 0 for
all z, as we will show in the next paragraph. From this we conclude that the level
lines of u foliate the entire plane, and through each point there passes exactly one
level curve of u. From (A.4) the same holds for v. This shows that F' is one-to-one.
From (A.4) it also follows that det F’ # 0.

To show that Vu # 0 for all z, we consider the set of critical points of u in the
fundamental square. The points are isolated, and moreover the Poincaré index of
each of these points is < —1 since u is a solution of an elliptic equation. On the
other hand, by the periodicity of Vu in x and y, the total index of the vector field
Vu over the fundamental square is zero. This proves that the set of critical points
of u is empty.

It remains to show that F' is a lift of a torus map, i.e., that there exists a basis
e;,e; of RZsuchthat F(x + 1,y) — F(x,y) =e;, F(x,y+ 1) — F(x,y) = e,.
Indeed, we have u(x + 1,y) —u(x,y) = l and u(x,y + 1) — u(x, y) = 0 from
the construction of u. Furthermore,

x+1.y
v(x+l,y)—v(x,y)=/ SVu -Nds

X,y

(1,0)

=/ SVu -Nds = v(1,0) — v(0,0)
0,0

is independent of (x, y); the same holds for v(x,y + 1) — v(x,y) = v(0,1) —

v(0,0). Thus e; = (1,a) and e, = (0, b) for some b # 0. This completes the

proof of the uniformization theorem.
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