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Abstract. In this paper we show that the geodesic flow in a Hedlund-type metric on the
3-torus possesses the shadowing property. This implies, in particular, that any rotation
vector is represented by a geodesic, a fact that in the two-dimensional case is given by
the Aubry—Mather theory, while in the higher-dimensional case is still unknown.

1. Introduction

The Aubry—Mather theory [A, MA1] guarantees the existence of invariant sets in area-
preserving annulus maps satisfying some mild monotone twist assumptions. These sets
can be thought of as remnants of invariant KAM circles. Remarkably, every rotation
number is represented by one such Mather set. An essentially equivalent Riemannian
geometric counterpart of an area-preserving annulus map is the geodesic flow on the
2-torus—more precisely, the two problems are applications of one more general theory
[B2]. The Mather sets for annulus maps correspond to minimal geodesics on the covering
plane of the 2-torus (by the definition of a minimal geodesic it realizes the shortest path
between any of its two points on the covering plane). A crucial property of Mather sets
is the fact that they are global minimizers of the action [B1, BK, BP, G, H, K, M,
M2, MA1, MA2, MO1, MO2, MO3]; it is therefore natural to attempt to extend the
Aubry—Mather theory to higher-dimensional symplectic maps or flows by seeking action-
minimizing orbits. Such an attempt cannot succeed, as was pointed out by Hedlund [H],
who produced a Riemannian metric on a 3-torus in which only three rotation vectors are
represented by minimal geodesics. More recently, Bangert [B1] gave a detailed study of
the existence and properties of minimal geodesics and showed that there exist restrictions
on the rotation vectors of arbitrary minimal geodesics.

Hedlund’s idea of non-existence of many rotation vectors leads to the question which
seems to be a natural route for generalization of the Aubry-Mather theory: for a general
Riemannian metric on the 3-torus L, does there exist a locally minimal geodesic (i.e.
minimal among the geodesics in a tubular neighborhood) for any rotation vector? This
question still remains open; the goal of this paper is to give a solution in a particular
case of Hedlund’s metric. In dimension 2 this problem has been solved by Hedlund [H]
for an arbitrary Riemannian metric.
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2. Definitions and the results
Following Hedlund, we define a conformal Riemannian metric dh = p(x)ds on the
3-torus

T3 = {(xl’x27 -x3) mod l}a

where ds? = dx12 —I—dx% —}-dx32 is the Euclidean metric and where p(x) is small in certain
‘tubes’ and p = 1 elsewhere. To be precise, we define the lines L;, Ly, L3 (which will
be the axes of the ‘tubes’) as

L, = {te;, t e R}
Ly, = {te; + %83, t e R}
Ly = {te3 + 1e; + 3e5, t € R}.
Furthermore, for any € > 0 we define the tube T;(¢) as follows (Figure 1):
T:(¢) = {x € R : dist(x, L;) < €}.

All the tubes are disjoint if 0 < € < %. Together with T;(¢) we consider all their integer
translates T;(¢) + N, N € N in R3, and define the Hedlund metric as follows.

X
1
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p=l T(a)

\ J 2 xz

(12,12,0)

X, L,

FIGURE 1. Definition of the Hedlund-type metric.

Definition 1. The Hedlund metric is defined by a function p € C°(R*) of period 1 in
each coordinate and given by

x) = i, if x is outside T;(e) +Z, i = 1,2,3;
PR =V (@4 e2(1 =) 2, it xeTi(e)+Z, i =1,2,3.

(Here, r is the distance from x to the nearest line L;.)

The choice of € will be specified in the next section.

Before stating the main theorem, we define the pseudogeodesics and give their
symbolic encoding. The following definition of the pseudogeodesics is motivated by
the intuition that there exist geodesics which ‘ride’ along the tube (approximately) for a
prescribed distance and then ‘switch’ to another prescribed tube at the moment of closest
passage, with the ride-and-switch sequence prescribed arbitrarily (in a consistent way)
for the entire infinite length of that geodesic.
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Definition 2. A pseudogeodesic is a continuous broken line consisting of a bi-infinite
sequence of abutting mutually orthogonal rectilinear segments of two alternating types,
which one can call ‘riding’ and ‘switching’ (Figure 2). The ‘riding’ interval is, by the
definition, any segment of a line L; + N, N € N, whose endpoints have half-integer
or integer coordinates x;. The ‘switching’ segment is any segment of length % which
connects two lines L; + N, L; + M, i # j, N, M € N which are at the distance %

FIGURE 2. The local pseudogeodesic y‘?.

Symbolic encoding of the pseudogeodesics. To specify the pseudogeodesic completely
(modulo an integer translation), we have to specify:

o the‘ride’: [-¢;, [ € 3N, i €{1,2,3};

e the sign of the direction of the switch: s € {4+, —}.
Note that the direction itself is given by the common perpendicular to the two rides just
before and just after the switch.

Thus, the set of all pseudogeodesics (identified modulo an integer translation in R*)
is in one-to-one correspondence with the space of all sequences of the form

o=...(I_1e;_,,s—1)(loei, so)(1€;,,51) ...,
where
e, Fe (D
and
2l; is even if ;,_, =e; ,, and odd otherwise. 2)

As an example, a piece of a pseudogeodesic given by

.. (2er, —)(her, D)(Ges, +)(—3er, —)(2ez, H(er, ) - ..
is shown in figure 2.

To state the main results we define the tubular neighborhood I'2 of the pseudogeodesic
¥2 and the patches Q(p).

Definition 3. The patches. Let g be an intersection point of 2 with the boundary 37 ()
of one of the tubes T (¢) = T;(¢)+ N, N € N. We define the patch Q(q) as a rectangular
neighborhood on 97 of the point ¢, given by

0a) =[x € 0T(@) : Isil <51 = V5, Iszl =5 < %e] ,
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FIiGuRE 3. Definition of patches Q(q), I';.

where 5; measures the displacement from g along the axial direction of the cylinder
9T (¢), while s, measures the displacement along the meridian of the cylinder.

Definition 4. The neighborhood T of y2. Given a pseudogeodesic y2, let {g;}%__ be
the sequence of the intersection points of ¥ with the boundaries of the tubes 7;(s) + N,
N € N, and let 0; = Q(g;) be the patches as in the previous definition. To be specific,

let the exit patches Q,; be even. We define the transition box
By, = convex hull of {Q U @241}

For the duration of this sentence only, denote by x; the longitudinal coordinate in the
one tube T¢ on which both patches Qi _1, Qo lie, and define (see Figure 3)

Ty = (U BZi) U (U{X rxe T, infxi(Qa1) < x(x) < Supxi(QZi)}>-
i€Z ieZ

THEOREM 1. (Shadowing) For any sequence o satisfying the above admissibility

conditions (1) and (2) with the corresponding pseudogeodesic y?, there exists a unique

geodesic y, which belongs to the neighborhood T of y2.

THEOREM 2. (Hyperbolicity) If two geodesics y,i, Y,2 whose existence is given in

Theorem 1 have eventually coinciding itineraries: o} = o2 for all n large enough, then
Yot and yy2 approach each other exponentially in the future. A similar statement holds

for the past.

THEOREM 3. Given any two geodesics yy1 and y,:, there exists a heteroclinic geodesic
Vo2 GSymptotic to Y, in the past and to y,: in the future. In particular, any pair of
periodic geodesics y,1 and v, is heteroclinically connected. In other words, the unstable
manifold of any periodic geodesic intersects the stable manifolds of all other periodic
geodesics.

Before stating some corollaries we define the rotation vector of a geodesic as the limit
(if it exists)
= lim Y©
=00 ly ()]
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where | - || is the Euclidean norm in R®. We also define the average action as

_ (0, Dlne _ .. l/s
ST e e f, Pds

These definitions are suggested by the analogy with the variational problem

o0
Jf L(x,x,t)dt =0

—00
corresponding to the Euler-Lagrange equations

d
TLi— Ly =0.

The above theorems imply the following corollaries.

COROLLARY 1. There exist uncountably many geodesics with any given (unit) rotation
vector. Moreover, the rotation vector can be prescribed for the past and the future
independently.

COROLLARY 2. There exist geodesics which visit every rotation vector arbitrarily closely.
More precisely, there exists a geodesic y such that for any unit vector u there exists a
subsequence {t,} — oo such that

im Y (ta) —
n—>00 |y (£y)]

Equivalently, the geodesic projected onto the unit sphere in the covering space R? is
dense.

COROLLARY 3. Given any number o € [e, %] and any rotation vector , there exists a
geodesic with u as the rotation vector and with o as the average action:
1S _ t
o= lim — / p(y)ds and u= lim M,
5500 S Jg =00 [y (7)]
where S is the Euclidean arclength. Thus, the average Hedlund length per unit Euclidean
length can be prescribed arbitrarily for any given rotation vector.

COROLLARY 4. The geodesic flow on T* with Hedlund’s metric has positive topological
entropy.

Mechanical and optical equivalents. We use the well-known equivalence of the
Riemannian geometry with mechanics expressed by the Maupertuis principle to observe
that the geodesics we are describing are also the orbits of the particle moving with total
energy E = 1 in the potential given by V(x) = 1 — p?(x) > 0 inside the tubes and by
V = 0 outside. These trajectories satisfy

¥ =-VV(y)
with
Wr+viy) =1
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Inside the Hedlund tubes the potential V' > 0 is higher than V = 0 outside, and thus
the sliding motions along the tubes are precariously balanced; in fact, we show that the
behavior described here is hyperbolic. It can also be pointed out that the repulsion from
the tubes is similar to the repulsion from the potential peaks in the Frenkel-Kontorova
model [FK] which was used by Aubry [A] to show the non-existence of invariant circles
in annulus maps far from the KAM case. A crucial property distinguishing the Hedlund
problem considered here from the lower-dimensional case of the Frenkel-Kontorova
model is that the potential well, which is R3 with the tubes cut out, is connected.

This problem admits an optical interpretation as well: the geodesics are the rays in
the medium with the index of refraction p(x), i.e. with the speed of light given by
c(x) = 1/p(x). In this interpretation the tubes defocus the rays: a beam sent along the
tube tends to spread; this spreading is responsible for the shadowing property.

The main theorem stated above can be viewed as a singular perturbation result
for the Riemannian metric on T3. We also note that the tubular neighborhoods
of pseudogeodesics constructed below give the isolating blocks (Conley [C]) for the
curvature flow; the fixed points of this flow are the geodesics.

3. Outline of the proof of the existence and hyperbolicity of shadowing geodesics

3.1. Basiclemmas. Leto be an arbitrary (admissible) sequence with the corresponding
pseudogeodesic y2. Let ... Qq, Q1, ... be the sequence of patches constructed as above.
The following lemmas contain key geometric ingredients in the proof. In what follows,
x denotes the longitudinal coordinate in the tube T'.

LEMMA A. (The connection lemma) Given any pair of points p, q € 3T (g) with
Ix(p) —x(g)| = %, where T (g) = T;(s) is any of the tubes defined above with x denoting
the longitudinal coordinate in T, there exists a unique geodesic segment in the Hedlund
metric with p and q as its endpoints and lying entirely inside T (¢).

FIGURE 4. The unique geodesic in 7 connecting two points on p, g € 37 .

LEMMA B. Let p,q € 8T and let (s1, 53) and (s3, $4) be the coordinates of p and q on
dT, where the longitudinal coordinates are sy, s3. In these coordinates the Hedlund length
L2(s), s = (s1, $2, 53, 54) Of the geodesic segment from Lemma A satisfies the estimates

IDL®|, |D’L?| = O(e), €)
uniformly in p, q for all |s; — s3] > 1.

For the next lemma, recall that Q,; are chosen to be the exit sections. Without loss
of generality let i = 0, so that Oy and @ are the consecutive exit and entrance patches
respectively.
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LEMMA C. Let L! : Qg x Q7 — R be the Euclidean distance between gy € Qo and
q2 € Q) expressed in the coordinates (s1, s2) and (s3, s4) on the patches Qg and Q1.
L1 = Ll(sl, 52, 83, S4). Then

D’L'>cl, ¢>0,V¥ge Q=Qox 01,
with ¢ independent of € for all 0 < ¢ < %
LEMMA D. The flow ¢* of the gradient vector field s = —VL'(s) on Q = Qo X Q1 (with

s as in Lemma C) takes Q into itself for t > 0; moreover, for any supporting unit outward
vector n(q) on dQ we have

D,L'=n-VL'=—-5-n>1e forallqedgQ. CH)

The proofs of these lemmas are given in §3.3.

3.2. Proof of Theorems 1-3. In this section we use Lemmas A-D; their proof is given
in the next section.

Proof of Theorem 1. Picking any admissible sequence ¢ with the corresponding
pseudogeodesic 2, let ...g_1gog: - .. be the sequence of intersections of v with the
boundaries of the tubes. Let Q; be the patch centered at g;, cf. Definition 3. We first
show (in step 1) that there exists a geodesic of finite length of any given itinerary and
then prove the existence of the infinite geodesic (step 2).

Stepl. We show that there exists a unique geodesic segment in I') connecting any
pair of points g, € QOm, qn € Q.. Without loss of generality we fix g1 € Qo and
g2n € Q>n, make an arbitrary choice of intermediate points ¢; € Q;, 2 <i <2N —1
and consider the broken geodesic g1q- ... gan; it is uniquely defined by ¢; according to
Lemma A. The length of this broken geodesic is a function of coordinates (s, s5) of
g; (cf. Definition 3); for convenience we will identify the point g; with the pair of its
coordinates on the patch: g; = (s}, s5). Thus, the length function is defined on a box in
R4*V-D_ Before proceeding further it is convenient to treat each Euclidean segment of
the geodesic as one object, i.e. to define

pk=( 9% )eBch“, k=1,...,N—1;
q2k+1

here By = Qo X Qo4 is a box in R*; we have also assumed that the even points gax
are the exit points from the tubes (Figure 5). We define py and pay as

_ 0 _ [ 9N Y.
m=(g) = w=(%):

these vectors are fixed since ¢q; and g,y have been fixed. The length of our broken
geodesic L : By X --- x By_1 — R takes the form

L(p1, ..., pv—1) = L°(p1) + L (p1) + L*(p1p2) + - - - + L' (pn-1) + L (pn-1)-
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FIGURE 5. The length function consists of the Euclidean (bold segments) and the ‘Hedlund’ portions (thin
segments).

We show that L has a unique minimum and no other extrema in the box B =
By x -+ x By_1, thus proving the existence of a unique geodesic segment goq,y. First
we note that the gradient flow of p = —VL(p), p = (p1, ..., pn-1) € B takes B into
itself, as follows from Lemmas D and B; indeed, pick p € 8B, and show that —VL(p)
points inwards. To that end, let n = (ny, ..., ny_1) be the unit normal to the face of B
at p; it suffices to consider the case when p lies on the face of the highest dimension,
say, when n = (n1,0,...,0). Then

X oL¢ aL! 1
P'"=—( (P1)+—(P1)>'ﬂ1§—— € <0.
ap opi 4

This shows at once the existence of a minimum inside B. Now, at any point p € B, the
Hessian of L is close to the block-diagonal matrix

D?L(p) = diag(D*L'(p1), D*L'(pn-1)) + O(e),

with 4 x 4 blocks on the diagonal. The smallness of the terms arising from L¢ follows
from Lemma B. We conclude by Lemma C that

D’L(p)>cl >0,

so that any extremum in B is a local minimum and in fact the only extremum since B is
topologically a ball. This proves the existence of a unique geodesic connecting ¢; and
qon Wwith the prescribed itinerary.

Step 2. The existence of an infinite geodesic is proven by a diagonal process. Pick any
admissible sequence o with the corresponding pseudogeodesic ¥ and the corresponding
sequence of sections

o Q1. Q0, Q1

which y? crosses at g; € Q;, i € Z. Consider an infinite curve yy obtained by replacing
the finite segment of y2 between g_y and gy by a geodesic in 'S whose existence
was proven in the previous step, while leaving the rest of y? intact. Letting N — oo,
we extract a subsequence from {yy} which converges uniformly between Q_; and Qg;
denote this subsequence by

Vi Vareo-.
From this subsequence, in turn, we extract a subsequence converging between Q_, and
Oy

Yo vi ...

Proceeding inductively we obtain a sequence

n n
YiseoosVas--e
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for any n which converges between Q_, and Q,,. It remains to observe that the diagonal
sequence

1,2
Vi Vas---
converges on any finite interval; its limit is the desired geodesic.
Step 3. We show that a geodesic segment in I'? between g_y € Q_y and gy € Qp

depends smoothly on its endpoints g-y.
We have

L(g-n,qn) = L(g-n,q-n+1) + -+ L{gn-1, qn),

where (g-y+1---qn-1) is determined by the requirement that it be a critical point. By
the properties of L! and L? this point is in fact a non-degenerate minimum (by the
block-diagonal nature of D2L), and thus depends smoothly on g_y,gy. The global

(in Q_n41 X -+ X Qn-1) uniqueness of this point follows from positive invariance
of @ _n41 X -+ X Qy—; under —VL (Lemma D) and from Lemma C. The proof of
Theorem 1 is complete. U

Proof of Theorems 2 and 3. It suffices to show that any two geodesic segments ¥°, ¥! in
I’y which share the same finite sequence of sections

Q1,..., 0w,

which they cross at the points g7, ..., 4¢3, and at g}, ..., g1, respectively, satisfy, for
some c1, ¢ > 0 independent of N,

lg¢ — a7) < c1e%|q] — g1 + 162N Pgly — g% 1, 1<k <2N.

Introduce a smooth deformation g{, 0 < ¢ < 1 from g to g}, similarly for ¢},,
and consider the connecting geodesic with corresponding intermediate points g; € Ok
k =2,...,2N — 1, which are unique by Step 3. Denoting v; = v, = (d/dt)gq;, it
suffices to prove that for some cy, c; independent of ¢,

luel < 18 |v| + 169N 0 |y, . &)

To prove (5) we show that v, satisfy a simple difference equation, equation (8) below,

where u, = (U';:il)

The equilibrium condition

D @

E‘lh
]

o

becomes
DL'(p) + D3L*(py_1pi) + DiL*(peprsa) =0, k=1,...,N—1,

where D;L(pi, p) denotes the derivative with respect to p; = (s{,sé). Differentiating

by ¢ and denoting
uk=ipk=3< 2% >=< Vo )
ot 0t \ Gak+1 U1 )

we obtain the linearized equation

Huy + Efug—y + Efugyy =0, 6)
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where
Hi = D’L'(pi) + D}L(pi-1p1) + DIL® (P picr1),
Ef = D\ D2L*(pe—1p1)
E} = D{D,L*(ppi+1)-

with

u0=<l?]) and uN=(UéN>. 7

Multiplying by H~! we rewrite (6) in the simple form
unzsn—un—l'*'g;:-un—f-l’ l<n=<N-1, ®)

with the boundary conditions (7). The 4 x 4 matrices eE satisfy, for some ¢ > 0
independent of &,

20lefll <ce, 2le, 1l < cs, ©)
as follows from Lemmas B and C.

LEMMA E. Any difference equation (8) satisfying (9) and with any prescribed boundary
conditions ug and uy has a unique solution. This solution satisfies

lual < luol(ce)” + lunl(ce)" ™" (10)
We use this lemma to conclude that
|vanl + [V2n41] < [vil(ce)” + [vanl(ce)™ ™",
which proves (5). This completes the proof of Theorems 2 and 3. O

Proof of Lemma E. By linearity it suffices to consider the special case of uy = 0. We
prove both the existence and the desired estimate

[unl < luol(ce)” (11)
iteratively by starting with
wW=@wd ..., )=0,...,0
and defining the iteration uf — uft! = @<t Wby = p(uk) by sweeping to the

right row by row (see Figure 6): given the row u*, we find ¥**' by running m from 1
to N — 1, that is

ubtl = gmubt fetuk | om=1,...,N -1 (12)
ugt' = uo, uff' =0. (13)
To show that each iterate u® = (uf, ..., u%,) satisfies (11), we assume inductively that

(11) holds for u* and show that it then holds for u**!. Using (12), (13), (9) and the
inductive assumption gives

C C
W = leTuft! + el U] < 5ol + lus)) < e+ (c&)Mluol < celugl.  (14)
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o] o ® @ -——--- ®
5/

o €n

u (o] @ —>— 0 @ ----- o
k k+1
u
m-1 m

, Yo

u: O L [ @ ----- ®

© : boundary conditions (fixed).
® : found by iteration.

FIGURE 6. Proof of Lemma E: the ‘sweeping’ iteration.

Proceeding inductively from u**! to ub*!, ..., to ubS!

shows that u**! = @(u*) satisfies (11).
To prove that the iterates converge we define the ‘energy’

identically with the last step

N-1
E@)=EQ,...,un-1) = ) (un = &1 = &xtimi1)’, (15)

m=1

which is a Lyapunov function for our iteration process ¢:
E(p(u)) < E(u), (16)
as can be easily checked. Moreover, we have the equivalence
p(u) =u < E(pu)) = E(u), arn

from the definition of ¢ and of E. Since ¢ maps the cube {(uq,...,un—1) : i} <
lug|} into itself for & small enough, the sequence of iterates ¢*(u) has a convergent
subsequence; let ¥ be its limit. Since E is monotone along the sequence ¢*(u) and
positive, we obtain in the limit

E(p(u™) = EW®),

ie. ™) = u™ by (17), proving that 4™ is a solution. The exponential decay
estimates survive the limiting process. Uniqueness follows from exponential estimates
and linearity. U
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3.3.  Proof of basic Lemmas C, D, A and B.

Proof of Lemma C. As suggested by Figure 7, two of the eigenvalues of the Hessian of
L' are O(1/¢) which is large, much larger than the lemma states. This, in fact, is shown
in the proof below but not expressed in the statement of the lemma since we are only
concerned with the lower bounds on the Hessian.

Fix an arbitrary pair of points ¢; € Q;, i =0, 1, and let t = (¢1, ;) and s = (sq, 53)
be the coordinates on Q;. By shifting the origin we assume that s = 0, t = 0 correspond
to go and g; (see Figure 7). Without loss of generality, we assume that #; and s, are the
longitudinal coordinates along the axes of respective cylinders; we also assume that the
cylinders are aligned along the x, and x; axes in R? = {x;, x,, x3} respectively.

€,

FIGURE 7. Proof of Lemma C.

In order to compute D?|gq; — go| we let n; be the unit normal to the surface Q; of
the ith cylinder at g;, in the direction away from the other surface. Let p;, pj be the
unit vectors in the tangent planes T, Qo corresponding to the coordinates t = (t1, t2);
similarly for pj, p]. Let P; = (p}, p/) be the matrix with column vectors p;, p/. The
point go(t) on Qg with coordinates t is then given by

qo(t) = Pot + 3no(Kot, t) + O(It]), (18)

where Ky is the curvature tensor of Qg atf go = go(0). For g;(s) we have a similar
expression (here | = |q,(0) — ¢go(0))):

q1(s) = les + Pis + ini(Kis, 8) + O([sP). (19)
Letting ey, e,, e; be the orthonormal basis of the axes x; in R® we get

Pot =t cosxe| + e, + £ sinaxes

Pis = s1e; + 52 cos e, + 53 sin fes,

1 We abuse notation by letting Qg be both a patch in R? and a rectangle in the coordinate plane.
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where o is the angle between T, Qg and the x;x;-plane. Similarly, B is the angle between
T, Q1 and the x;x,-plane. Expanding (18) and (19) in the basis {¢;}, using the notation
Ko = (Kpt, t), K£; = (K8, s) and n;; = (n;, ¢;), we obtain,

qi1(8) —got) = [£+sysin8 — 1y sina + %7’“3’(:1 — %n03lC0]e3
+[s1 — ncosa + 3ny1 Ky — %n01’C0]e|
+ls2c08 B — 1 + 3n12K1 — $naKolez + O (] + Is]),
so that
L(t.s) = 192(8) = q1(®)] = Lo+ L1 + Lo + O (It + Is),

where L; are the terms of order / in s and ¢, and the quadratic term, which interests us,
is

1
L, = D’L(t,s) = 5(”13’C1 — nko)

1 .
+2—e[(s1 — 11 COS a)2 + (spcos 8 — t2)2 + (s28in B — ¢ sin cx)z].

With the above choice of the cylindrical patches Q; we have Ky = (Kot, t) = (l/s)tlz,
K1 = (Kis,8) = (1 /s)s%. Moreover, there exists a constant ¢ > 0 such that for all
q; € Q; we have ni3 > ¢, —ng > ¢, |cosa| > % and |cos 8| > % This shows that the
quadratic form L, satisfies the lower bound as claimed in the lemma. O

Proof of Lemma D. Consider the 4D cube Q = Qg x Q1 = {(t,s) : |t;] < &, |5i| <
Si, i, j = 1,2}, and pick any g € Q. There are four possibilities: g can lie on a 3D
face of Q, on a 2D edge, on a 1D edge or on a vertex, depending on whether one, two,
three, or all four bounds

Gl <&, lIsil <5 (19)
are reached. In the first of these cases we define the vector n = n(g) to be the outward
unit normal to Q. In the remaining cases of g lying on a lower-dimensional edge, this
edge is an intersection of two or more 3D faces; to each of these faces there corresponds
a unit vector as described above and we simply choose n(g) as the sum of these vectors.

It suffices to prove the bound (4) for g € 3D-face, so that we assume that precisely one
of the bounds (19) is reached.

4 A Tn(Q)
[ l -
q

 j
FIGURE 8. Proof of Lemma D.
There are only two essentially distinct possibilities: Case 1 where #; = ; and Case 2

where t, = #,. All the others are trivial modifications of these two, and we now proceed
to prove (4) in these two cases.
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Case 1. t; = t;. We have, for L(q) = |1 — qolf
d
DnL(q) = _L(tlr t, 51, SZ)n:z', .
on

It is convenient to consider L2(g) = (g1 — go)? instead of L(g):

10 190 d ]
——L¥g) = =——(q; — qo)* = - qgo)—I(g1 — = - q1)—qp. 20
X (@ 2o (g1 — g0)" = (g1 — q0) o (g1 — q0) = (9o %)atl do (20)
Substituting
d - b4
—a‘f—f = cosae; — sinaes, where @ = el = ry
and
go — q1 = —(£+ 0(e))es + O(Ve)e; + O(Ve)e, 21

into (20) we obtain

13 1
Ea_an(‘” = £sin@ + O(J/e) > 5e,

which shows that (4) is easily satisfied in Case 1.

Case 2. t; = t,. We have

SDuLAg) = %%L%q) = (g0 - q»% 4. 22)
Substituting
d
a—tz% = ey,

do = hey + O(e) = Jee, + O(e),
q1 = tes + s1e; + O(g),
into (22) we get
3DaL*(@) = Ve + 0(e) > 3¢,
which proves (4) in Case 2 and thus completes the proof of Lemma D. ]
Proof of Lemma A. The proof is by a direct calculation. It is based on the fact that with
our choice of the metric the geodesics are governed by linear equations. According to

the Maupertuis principle, the geodesics in a conformal metric p(x) coincide with the
trajectories of a classical particle in a potential field:

X=-VV(x), V& =E-p*x), (23)
with the energy
o2
X? + V) =E. (24)

With our choice of p(x),
1
V=E—-p*=E- —2—(s4+(1 —HrYy, r? =x§+x32, Ir| <e,
£

1 Here we abuse notation by letting g denote both a point in R> and a pair of coordinates on a patch.
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and the geodesics inside Tj(s) = {x : x22 + x§ < &%} are governed by

¥ =0 (25)
1— 2
B=2——Tx, =23 (26)
€
together with the energy relation
o2 1— 2
%=gz+ S—r% Il <e. @7

It suffices to show that the boundary value problem (25)~(27) with boundary conditions

M= p=(0,0,¢), x*™ =g =1(a ccos8,ssinb) (28)
has a unique solution.
Any solution to (25)-(26) with x(0) = x*** is of the form (here v, vy, v3 are
constants):
x1(t) = vyt (29x)
& £
x2(t) = vy sinh 87, = ——x ~ —, (29y)
2 2 20— 2
x3(t) = ecosh8™ 't + Svs sinh 6"t (29z2)
and the energy relation (27) gives
2 2 2
vi vy v
— =4+ 2=1. 29E
S ts TS (29E)

We now show that for any x*™ given by (28) with a > g there exists a unique choice of
parameters (v;, vz, v3, T) subject to (29E) such that x(7) = x°". This latter boundary
condition is

nT =a (30x)
8vysinh 87T = £cos® (3oy)
ecosh8™!T + §ussinh§™'T = &sinb. (30z)

Expressing v; = a/T, we use (30y) and (30z) to find
2 T\! T T
vs + 2 = ;—2 (sinh2 3) (1 — 2sinf cosh 3 + cosh? 3) .

Substituting these into the energy relation (29E) we get

a® + g cosh’(T/8) — 2sin6 cosh(T/8) + 1

T2 ° §2 sinh?(T/8)

2. 3D

Since the second term in the left-hand side is positive, we must have (a%/T?) < 2, i.e.
T>a/V2=1 /8ﬁ. For all such T the left-hand side is a monotone decreasing function
(decreasing from a value > 2 at T = a/+/2 to £2/82 = 2(1 —&2) < 2 at T = 00). Thus
there exists a unique 7 such that (31) holds. Once T has been found, v1,2,3 are defined
uniquely by (30). The energy relation (29E) is automatically satisfied. O
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Proof of Lemma B. The smallness of DL? is due to the fact that the geodesics in question
are nearly normal to 87. To make this more precise, we remove the restriction g € 87T,
obtaining an extension £ of L. To be specific, let r be the distance to 8T'; we have
L = L(s1, 52, 53, 54, 1, r2) with L(s1, 52, 53, 54,0,0) = L(sy, S, 53, 54). This extension
L is well defined for all r{, r, small enough and for |s; — s3] > %

We will prove

IVL(s, r) = n(s)lr=r=0 = O(&) (32)

and
185, (VL(s, 1) — 1(5))|r=r=0 = O(8), i=1,2. (33)

However, we first show that (32) and (33) imply the desired estimates on L.
Letting 7; be the unit tangent vector to 87 corresponding to 9/ds;, we have

O, L(s)=VL .-, =(VL—-n)-1i+n-17, = (VL —n)-1, = O(8),
proving |DL| = O(g). Next, we obtain
Oy, L(s) = 0,(VL 7)) =(0,VL) 1, + VL 37
= (Oyn)- 0,7+ 0(e)+n 0,7+ O() =0, (n-7;) + O(e) = O(e).

where (33) and (32) were used. It remains to prove (32) and (33).
To prove (32) and (33) we note that since p is a conformal metric, we have

1
VL(g) = —x,
x|
in the notation of the proof of Lemma A. From (29)
T T T
AT = v, 5() =vrcosh 5, h = gsinh < +vscosh (34)
and from (30) we get

(T = % i2(T) =cos6- A, ¥%3(T) =sind - A, (35)
where
£ T
A = — coth —.
3%

From (31) we get an estimate on T

T=-"2_ 40,
g2

and using it in (2) we get x;(T) = O(g). The energy relation x(T) = 2 applied to (35)
gives A = +/2 + O(e); this shows that (recalling that |(T)| = v/2)
1
—=x(T) —nx(T)) = O(e),
V2

proving (32).
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To prove (33) we note that the time T(sq,s;) depends on the coordinates sq, 57
mentioned above, as do vy, v, v3 and n. We have to prove

B, (%x(nsl, 52)) — n(sl,sz)) = 0.
This is again a straightforward consequence of the above estimates (34), (29), (30), (31)
and we omit the details.

So far we have estimated only the derivatives with respect to the coordinates s;, s, of
g, but these imply similar estimates on all derivatives up to second order in sy, 52, 53, 54
(here s3, 54 denote the coordinates of p), as follows from the translation invariance of
L(sy, 83, 3, 54). For instance,

2

0
32, L(s1, 52,53, 58) = 32, L(s1, 52 — $4,53,0) = —=———L(sy, 53, 53,0) = O(e).
05105

Acknowledgement. It is a pleaure to thank Jiirgen Moser for his encouragement in
writing down these ideas and for many stimulating conversations.

REFERENCES

[A] S. Aubry and P. Y. LeDaeron. The discrete Frenkel-Kontorova model and its extensions. Physica
8D (1983), 381-422.

[B1] V. Bangert. Minimal geodesics. Ergod. Th. & Dynam. Sys. 10 (1990), 263-286.

[B2] V. Bangert. Mather sets for twist maps and geodesics on tori. Dynamics Reported, vol. 1. Eds
U. Kirchgraber and H. P. Walther. Wiley and Teubner, Chichester—Stuttgart, 1988, pp. 1-56.

[BK] D. Bernstein and A. Katok. Birkhoff periodic orbits for small perturbations of completely integrable
Hamiltonian systems with convex Hamiltonians. Invent. Math. 88 (1987), 225-241.

[BP] M. Byalyi and L. Polterovich. Geodesic flows on the two-dimensional torus and phase transitions
‘commensurability-noncommensurability’. Functional Anal. Appl. 20 (1986), 260-266.

[C] C. C. Conley. Isolated invariant sets and the Morse index. CBMS, No 38, AMS, 1978.

[FK] V. Frenkel and T. Kontorova. ZhETF 8 (1938), 364.

[G] C. Gole. A new proof of the Aubry—Mather theorem. ETH preprint, 1991.

[H] G. A. Hedlund. Geodesics on a two-dimensional Riemannian manifold with periodic coefficients.
Ann. Math. 33 (1932), 719-739.

[K] A. Katok. Some remarks on Birkhoff and Mather twist theorems. Ergod. Th. & Dynam. Sys. 2 (1982),
185-194.

M] R. Mafié. On minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992), 623
638.

[M2] R. Mafié. Global variational methods in conservative dynamics. IMPA, Rio de Janeiro, 1993.

[MA1] 1. .Mgther. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. Topology 21
(1982), 457-467.

[MA2]  J. Mather. Action-minimizing invariant measures for positive definite Lagrangian systems. Math. Z.
207 (1991), 169-207.

[MO1]  J. Moser. Monotone twist mappings and the calculus of variations. Ergod. Th. & Dynam. Sys. 6
(1986), 401-413.

[MO2] ). Moser. Break-down of Stability, Nonlinear Dynamics Aspects of Particle Accelerators (Lecture
Notes in Physics 247). Springer, 1986, pp. 492-518.

[MO3] J. Moser. Recent developments in the theory of dynamical systems. SIAM Review 28 (1986), 459
485.



