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1. Introduction.

In this note we will describe an interesting class of waves propa-
gating through a discrete medium. The prime example is a lattice of
infinitely many coupled pendula given by the system

L¢n + k(2¢n - ¢n—1 - ¢n+1) =1, (11)

where L = ¢ + v¢ + sing, and n € Z, with constant parameters
v, k and I. This system describes an infinite chain of pendula with
nearest neighbor coupling, in a periodic potential and in the presence
of forcing and damping. Another physical interpretation of eq. (1.1)
is sketched in Figure 1.1.
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Figure 1.1. Eq. (1.1) describes an infinite chain of particles
in a slanted potential — cos ¢ — I'¢ with the nearest—neighbor
elastic coupling in the presence of damping v¢

This system can be written formally in a more compact form
ov
% =
where ¢ = (...,¢_1,4%, ¢1,...) and the potential is the formal expres-
sion

¢+ + 0,

V= 3 S (fns — )7 + cos b — I

All the results and proofs of this note carry over almost verbatim
to the case of a more general nonlinear coupling, forcing and a not
necessarily sinusoidal potential. We have chosen a specific case of
eq.(1.1) because it really contains the substance of the more general
problem

bn + f($n) + P(6n) + 9(bn — bn-1) + 9(n — np1) = I, (1.2)

where the generalized damping f and coupling g are nonlinear func-
tions satisfying some mild monotonicity and growth assumptions, and
where p is a periodic function satisfying some mild nondegeneracy as-
sumptions. There is a robustness of behavior in such systems that is in
contrast with the more delicate situation in completely integrable sys-
tems such as the so-called sine-Gordon equation ¢¢; — ¢z +sing =0
with no damping and no forcing.
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Eq. (1.1) arises in several mathematical and physical contexts,
among which are the following.

1. Eq. (1.1) is a discretization of the damped driven sine-Gordon
equation

¢tt+7¢t_¢zz +Sin¢: Ia (13)

with ¢, replaced by the second difference. The dissipation 7(}.5 and the
forcing I destroy the complete integrability of the system, producing
the new effects and the need for different methods.

2. Eq. (1.1) is a dynamical version with dissipation of the
Frenkel-Kontorova model (8] arising in the solid-state physics and
used by Aubry in his work [1].

3. Arrays of Josephson junctions (SQUIDS, or superconducting
quantum interference devices) coupled in a nearest neighbor way are
described by eq. (1.1).

4. Systems of coupled pendula provide a phenomenological model
for charge-density waves (CDW) in anisotropic crystals [9].

A particular case of two particles:

b1 + vy +sin ¢y + k($1 — ¢2) = I,

b2 +1d2 +sin gy + k(dy — 1) = L,

has been analyzed in [12], [15], [16], [28] for small k and in [4], [11]
for larger k.

The main result of this note is the analysis of a discrete analog
of solitary traveling waves for eq. (1.1). These solutions, which exist
for certain parameter values we specify later, behave as follows. At
t=0all ¢;, j <0 liein the interval [0, ], while the remaining ¢; lie
in the interval [27g, 27g + Z], where g is an integer depending on the
parameters in the equation. As t grows, @y leaves the left interval and
travels to the right, entering the right interval at some t = O(k™1);
the other particles stay meanwhile in their respective intervals. After
¢o has compits trip, ¢; repeats the same procedure, etc..

Together with these solutions, for which one particle at a time
makes a trip, there exist countably many other solutions behaving in
the same way. These solutions are obtained from the ones described
above by separating ¢; by adding a fixed multiple of 27 to all the
distances between every two neighbors, figure 1.1. One observes the
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gap traveling to the left as the particles travel to the right; this is
a discrete version of a rarefaction wave. Such solutions resemble an
effect similar to slipping and pinning in charge-density waves [9)].

All the results mentioned here hold for a periodic chain as well,
figure 1.1. Such solutions exist provided the parameters I and % lie
in the regions of the (I, k)-plane described in the theorem in the next
section, Figure 2.1.

The precise statements are given in the next section.

Remark: discrete vs. continuous model.

Let h be the mesh size on the r-axis, and let k¥ = % and
¢n = ¢(nh). Then eq. (1.1) is the second difference approxima-
tion of (1.3), and for large k the approximation is good; for small & it
is bad. Our methods in this note do not extend to the case of large
k. There is, in fact, a strong qualitatitative dissimilarity between the
discrete and the continuous equations when k is small. For instance,
the discrete model (1.1) possesses an extermely rich set of equilibria;
studying these reduces to the study of area—preserving cylinder maps;
our understanding such maps is by no means complete: KAM and
Aubry-Mather theories still leave many questions unaswered. As k in
eq. (1.1) grows, this rich structure “melts”, until at most two equi-
libria remain in the limit (1.3) of ¥ — oo (all this provided I # 0).
These surviving equilibria are the two stationary solutions of eq. (1.3)
constant in both z and ¢ (they exist only when |I| < 1). This simpli-
fication of the behavior is due to the fact that an autonomous flow in
the plane is a much simpler object than a mapping of the plane.

2. Traveling waves.

2.1. Symmetries.

Before stating the main result, we point out the symmetries in
the problem. Let o¢ denote the right shift of the sequence ¢ =
("'¢—1, ¢07 ¢1’ ) defined by

(09); = i1, (2.1)
let 7,, be the translation of the vector ¢ defined by
(o) = ¢; + 27n, (2.2)
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let 8¢ be a discrete dilation of ¢ defined as

(64); = ¢; + 25, (2.3)
and let p be the reflection in the index:
(p$); = ¢-;. (2.4)

Lemma 2.1. Solution set of eq. (1.1) i3 invariant under o, 7, § and
p-
Proof is obvious.

2.2. The main theorem.

Theorem 2.1. Fiz the dissipation constanty > 0 and an integer
period N > 1 of the chain. There exists a set of open overlapping
domains Dy in the (I, k)-plane, enumerated by all positive integers
g > go = go(7), figure 2.1. such that for all (I,k) € Dy there exists a
periodic “traveling wave” solution $(t) = (...¢—1, o, #1,...) behaving
as follows.

The solution has an integer spatial period N:

djsN = ¢j + 27g. (2.5)

We allow N = co, in which case there are just two clusters, “left”
and “right”. Att =0 all ¢; lie in clusters of N particles each, in the
intervals J, = [0, F] + 2mgn — more precisely, ¢,(0),...,on5(0) € Jy,
and ¢j4nn(0) € Jun for 7 =1,2,..,N and n =0,%1,42,....

As t increases from 0, the last members ¢,n(t) from each clus-
ter in J, travel simultateously to the next cluster in J,41 while the
remaining particles are confined to their intervals J,. After ¢,n(t)
enter the neighboring interval Jiy, to the right, the left neighbors
dnN—1 Tepeat ezactly the same process; after N trips all the ¢'s from
the interval J, enter the following interval Jo41. The corresponding
solution 1s time-periodic modulo index shifts o: there ezists T > 0
such that

od(t+T) = g(1), (2.6)

and in the case N < oo

#t+ NT) = 194(1), (2.7)
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t.e. in ttme NT all ¢’s are shifted by 2ng.

There exists, moreover, another unstable periodic solution behav-
ing as described above, except the intervals J, should be replaced by
Jot+ 3 =[rmng + I, 7(n+ 1)g].

TGN

—

[

Figure 2.1. Domains D, and some lattice waves for N > 2, N = co.
The integer label g of the domain Dy
gives the gap size of the traveling wave.

Discussion.

1. The stable and the unstable solutions mentioned in the the-
orem undergo a saddle-node bifurcation, in the topological sense. It
has not been proven, although it seems almost certain, that as the
point (I, k) crosses from one region D, into D42, the pair of solu-
tions disappears in one saddle-node bifurcation shortly after D, is
left and a new pair is born shortly before D 4, is entered — we point
out that the domains Dy constructed in the proof are not the best
possible and could be extended somewhat from the estimates given
below.

2. By choosing N = oo we obtain only two clusters in Jy and in
J1, and one particle at a time makes a trip from Jy to J;, as mentioned
already in the introduction.
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3. Symmetries (2.1)—-(2.4) produce countably many other peri-
odic solutions out of each of the two periodic solutions described in
the statement of the theorem. The dilational symmetry (2.3), for in-
stantce, produces additional periodic solutions by spreading the par-
ticles by a fixed integer multiple of 27; in particular, the particles
from one cluster will be spaced apart. The resulting configuration is
shown in figure 3.1.

4. The repetition of the profile at time intervals T is the discrete
version of the constancy of profile of a traveling wave for eq. (1.3),
which can be expressed by the relation u(z,t) = U(z — vt), or equiv-
alently, by u(z,t + 0) = u(z — vo,t) for any o € bf R, reflecting the
equivalence of the actions of the groups of time and space translations.
This is the precise analog of eq. (2.6) for the discrete system. Since
in our problem the space translations form a discrete group, so do the
time translations.

5. The overlapping nature of the domains D, implies the coex-
istence of two traveling waves with distinct gap sizes, g and ¢ + 1.
This peculiar phenomenon is not present in the countinuous case of
the sine-Gordon equation and is explained in section 3 where the in-
teger g is defined. We can also point out that the unstable solution
corresponds to the antikinks.

3. Proof of the theorem.

3.1. A heuristic discussion.

3.2. An outline of the proof.

3.3. Two auxiliary systems.

3.4. Definition of the gap length g.

3.5. Construction of the domains D,.

3.6. Poincaré sections X, ¥'.

3.7. Poincaré mapping F : ¥ — ¥’ is into.

3.1. A heuristic discussion.

Discrete traveling waves described here have the same underlying
mechanism as the “caterpillar” solutions studied in [16]. We adapt
the heuristic discussion from that paper to the system at hand. The
dynamical explanation is the same as for the case of two pendula, but
there are interesting complications of algebraic nature, which give
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rise to the phenomenon of coexisting stable traveling waves. To be
specific, we concentrate on the case N = oo which corresponds to two
clusters of particles with ..., ¢_1, ¢ lying in the interval J, = [0, 7
and ¢, ¢s, ... lying in J; = 2mg + Jo; in the present discussion we will
give a rough estimate of the integer g and of the parameters v, I, k
needed for the traveling waves described here to occur.

Rewriting the system (1.1) in the abbreviated form L¢, = T,,
where T, = I + k(¢n—1 + dny1 — 2¢,) is interpreted as the torque
exerted on the pendulum by its neighbors, we note that T, is a slowly
varying function (which is justified if k¥ << 1); this allows us to (cau-
tiously) think of T}, as a constant.

We describe the basic mechanism of the traveling waves. We want
¢N-1 to start and ¢ to stop roughly at the same time. It may seem
surprising that the starting of ¢y_; which reduces the backward pull
on ¢y does not enable ¢ to continue running. The reason that this
does not happen (for (I, k) € D,) is the following. Assume that ¢n_;
undergoes a saddle-node bifurcation* when én is a finite distance,
say, 107 short of its destined sink. Counting from this moment t,,, it
takes time ~ k=3 for @N-1 to start (Lemma A.1 from the Appendix),
while it takes only ~ ln% for ¢n to settle safely in the sink, provided
some “bad” parameter values are avoided (Lemma A.2), and thus if k
is small, ¢n_; will start moving only after ¢ has settled. This slow
starting is due to the quadratic smallness of the vectorfield near the
saddle-node. We conclude that in order to have one particle run at
a time we need a near-simultaneous occurence of the saddle-node for
#n-1 and of the heteroclinic bifrcation for én. It may appear at a
first glance that the resulting requirement on I , k is rather stringent,
i.e. that (for a fixed k) the value of I would have to be rather specific,
but it is not so: for k small, k=% >> ln%, and this allows us much
more freedom in choosing I than might be expected at a first glance.
This freedom is explained by the fact that we can allow choices of I
for which ¢én_; will undergo a saddle-node bifurcation long before
#n settles in the sink but start moving only after ¢ has settled.

It is also interesting to observe that what one might have expected

* More precisely, the phase plane of an auxiliary system obtained
by fixing the two neighbors of ¢x_; undergoes a saddle-node bifur-
cation.
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to occur in general, namely that the starting of ¢y—; would prevent
¢~ from stopping occurs rather for the exceptional parameter values,
in the gaps between the domains D,.

We proceed now to estimate the range of parameters I,k for
which the behavior just described could be expected to occur. Assume
that at t = 0 ¢, is somewhere on its way from Jy to J; with all the left
neighbors confined to Jo and the right neighbors confined to J;. As
#1 runs, the torque T decreases while Ty and T, grow. If a traveling
wave described above is to exist, the following conditions must hold.

(A). If ¢ is held fixed artificially in Jp, then ¢; must stop in Jy;

this requires that
for ¢, € J; we have T\ = I; (3.1)

here I}, is the homoclinic value of the torque for the simple pendulum
defined below in sec. 3.3.

(B). If ¢ reaches J; ¢ must start; for that we need to have
To = 1 before ¢; reaches J;; we ask that

To > 1 for ¢y =2mg — 2. (3.2)

(C). ¢o must start after ¢; stops — otherwise ¢; will continue
running since ¢o will start catching up to ¢; thus decreasing the
retarding pull by ¢¢ on ¢; thus causing the latter to speed up again.

As shown in the starting lemma A.1 in the Appendix, ¢ stays near z

for time > ck~3 after the moment when To reaches the critical saddle—
node value Ty = 1; we have thus to make sure that ¢, settles in its
sink in J; in a shorter amount of time, counting from the moment
when Ty = 1. To that end we do not want Ty = 1 to occur when ¢, is
still too far from J;. To be precise, we let n > 0 be a large but fixed
integer and require that

To <1 for ¢ =2n(g —n). (3.3)

This estimate guarantees that ¢, will settle in the sink in Jy in time
< ckln%, provided the phase point &, = (¢1,q.$1) does not pass too
close to the saddle (it is precisely to avoid this close passage that we
remove small neighborhoods in the bifurcation diagram; this results in
creation of the wedges in figure 2.1). With k chosen small enough we
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obtain tgtarting = €1 kE > ln% = tstopping, @ condition which assures
that ¢ starts only after ¢; has settled into the (slowly moving) sink.
We estimate now the parameters for which the above require-
ments (3.1)—(3.3) hold.
Using eq. (3.1) and the fact that ¢_; € Jy and ¢y € J1, we
obtain an equivalent estimate

I—-k2rg=1I,+ Ry, with |Ri| < 7k. (8.1)

Next, eq. (3.2) holds if 1 < Ty = I + k(d—1 + ¢1 — 2¢o) = I + k(0 +
(2mg —27) — 0)+ Ry = I + k2ng — k2w + R, with |R,| < km; this, in
turn, holds if a slightly stronger inequality holds:

I+27kg>1+nk (3.2)".

Here again we used ¢_; € Jy and ¢; € J;. Similarly, we conclude
that eq. (3.3) holds provided

I+27gk <1+ 27(n—1)k. (3.3)

Combining the requirements (3.1)’-(3.3)’ we obtain the estimates on
I, g for which (3.1)-(3.3) hold and thus the motions described above
should take place:

k< I—

1 ;I" < m(n— 1)k, (3.4)
1-1I,
47

This completes our informal discussion.

k1 +0(1). (3.4)

3.2. An outline of the proof of the main theorem.
Fixing an arbitrary cluster size N > 1, we consider the periodic
configurations:

¢i+N = ¢j + 27y, (3.5)

where the integer ¢ = g¢(+, I, k), independent of N, is defined be-
low. With this periodicity condition it suffices to keep track of ¢ =
(¢1,..-¢n) instead of the whole doubly infinite sequence (..., ¢o, ¢1,...);
we keep the notation ¢ for the finite sequence as well, without risking
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a confusion. All the arguments hold for the case N = oo as well,
when only two clusters are present, but we concentrate on the case
N < co. With the periodicity condition (3.5) the phase space of
the system {(¢, d))} = R?N. We will construct a Poincaré section &
of dimension 2N — 1 in R?" and show that the flow maps ¥ into
Y =018 = {(c71¢,071%) : (4,%) € T}, where o is the right shift
defined in (2.1) — provided the parameters v, I and k are chosen ap-
propriately. One can think of £’ as obtained from ¥ by moving each
¢; into the position of its right neighbor ¢ ;4. The section ¥ itself will
be chosen to correspond to the initial conditions with (¢;,v¢; = (].51‘),
J=1,2,..., N —1 lying (roughly speaking) in the potential wells while
én equals a certain value = mwg half way between the intervals J,
and J; = Jy + 2rg. Carrying out this construction would imply the
existence of a periodic solution with the properties claimed. Indeed,
if the Poincaré map F takes ¥ into ¥', then oF takes ¥ into itself;
hence there exists a fixed point &, € £: 0 F®y = Py; this implies
(2.6) in the statement of the theorem. Since FN®, = 0~ N®, and
o N®, = 193, by (3.5), the statement (2.7) of the theorem would
follow as well.

A precise idea on the nature of the orbit connecting ¥ and ¥’
will be seen from the proof.

3.3 Two simple auxiliary systems.

To construct the bifurcation diagram of eq.(1.1) we will need
the quantities associated with the well-known equation of a single
pendulum with dissipation and a constant torque

Lé=¢+~d+sing=1 (3.6)
and with a related equation
Lx¢=d+vp+sing+Ko=a (3.7)

1. There exist two bifurcation values I = 1 and I = I, = I(y) for
the torque in eq. (3.6), corresponding to the saddle-node bifurcation
and to the saddle connection respectively, figure 3.1. For all I > I,
eq.(3.6) posesses a unique running periodic solution whose trajectory
in the (¢,% = ¢)-plane is given by a periodic function

"l) :p(¢aI) > 0.
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Further details on this well-understood system can be found in [2],

[10], [14].

Figure 3.1. The simple pendulum (3.6).

2. Any solution of eq. (3.7) terminates in an equilibrium point; all
“moderate” initial conditions terminate in the same equilibrium point,
which is a sink, save for the exceptional values of a when the stable
manifold of a saddle separating the basins of two sinks passes through
the “moderate” set of initial conditions.

To be specific, let (S(a, K);0) denote the sink in the (¢, )- plane
which attacts the solution with the initial condition satisfying

a—K¢(0) =1,4(0) = 0;

we will call the value S(a; K) the distinguished sink. The first saddle
equilibrium to the right of S(a; K) will be called the distinguished
saddle and denoted by Sa(a; K). When the above initial condition
lies on the stable manifold of a saddle, the distinguished sink S(a; K)
is undefined; the function S has lines of discontinuity in the (a, K)-

plane, given by a = a;,(K), where m € Z; these are sketched in figure
3.2.
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S(a; k) [%] ’°[§f:] =1 [;s;] -2

27k [27k ,27k

Sa(a; k)

a=ay(k)

Figure 3.2. Phase portrait of €q.(3.7) and the discontinuity lines
of the function S(a; K).

We list the properties of S used in the proof.

1° Periodicity: S(a+ 27 K;K) = S(a; K) + 27

2° 25(a;K) = m > ¢(y) > 0 where ¢(y) depends on ¥y

only.

3° KS(a; K)=a— Iy + p,|p| < 37K.

4° The discontinuities of S(a; K') form a countable set of curves

a=an(K), m € Z in the (a, K)-plane, figure 3.2. These curves

satisfy am41(K) = am(K) + 27K and am(0) = I4.

Proof of 1° — 4° amounts to the phase plane analysis of eq. (3.7)
and is omitted.

3.4. Definition of the section X.
In the next paragraph we will define a one-dimensional segment

S and two—dimensional boxes B, B' and B" in the (4, ¢)-plane. With

the aid of these, we define

Y=B'"xBx..xBxB"xS, N factors in the product.

To define the sets S, B, B' and B"”, we fix a constant r > 0,

to be specified at the end of the proof, and let B = B, be the r-

neighborhood of the sink of the equation Lé = I 'in 0 < ¢ < %

2
Figure 3.1. The boxes B' and B" are defined similarly as the r—

neighborhoods of the sinks of L¢ = 1—“"—2—!@ and L¢ = ﬂ;—h respectively.
The centers of the boxes B, B' and B" thus lie at sin™! I, sin™* h"—jl’*
and sin™* -?3—'5;—1‘1 respectively. To define the segment S, we let ¢ =
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p(I,¢) denote the (unique) periodic solution curve of Lé = I in the
(#,% = ¢)-plane (figure 3.2), and let ¢° = g be half way through the
gap (whose length =~ 27¢ is defined in the next section (3.5)). We let
Do = p(qﬁo,li,f’*) and define S as the set {(¢°,¢) : -%po < < 2po},
where I}, is the homoclinic value of I defined in sec. 3.3.

Motivation of the definition of B, B', B". When ¢y is roughly
in the middle of its run while the remaining ¢’s are standing, we
expect ¢y, ..., §n—1 to lie O(k)-near the moving sinks* of the systems
L¢j =1T;,j =1,..,N —1. The boxes B, B' and B" were chosen
as the neighborhoods of these sinks; we proceed to estimate their
location when ¢y is in the middle of the run, i.e. near wg. For
J=2,..,N — 2 the torques T; = I + O(k), so that ¢; should be near
sin”! I. For ¢y_; we have Ty_; = I + g + O(k), which via (3.4)
gives Ty_, = 3—'*:1—I‘L + O(k), and ¢n_; = sin™?! ﬁ:;[-‘k + O(k). Similarly
we estimate ¢, = 1—"'43—]1 + O(k).

We conclude with the remark that &' = 6~ = B x ... x B x
B" x 8 x (B' 4 2mg).

3.5. Definition of the gap length g is given by eq. (3.8) below
and is motivated as follows. If ¢n4; are held artificially fixed in
Jo and Jy and if ¢x is allowed to run then it will tend to** S(I +
k(¢n-1+ dN+1);2k) in the non-exceptional cases, i.e. when the first
argument of S is not close to a,,(2k),m € Z. Near the end of the run
of ¢n we have the estimates ¢y_; = Z + o(k®%) (since ¢n—1 lingers
near 7 before starting by Lemma A.1 in the Appendix) and ¢n41 =
2mg +sin™" I 4 0(k) (since ¢n4; is safely in the “sink” in J; by the
time ¢x is completing its run). These estimates on its two neighbors
suggest that ¢ approaches S(I+k(Z+2mg+sin~! I); 2k) = S(4;2k),
where

A=Al k,g)= I+k(g +2mg +sin~! I);

* When we speak of the (moving) rest points of a nonautonomous
system X = f(X,t) we refer to the (t~dependent) zeros of f, which
are the rest points of the associated family of autonomous systems
X = f(X,7), 7 — const., rather than of the given nonautonomous
system.

** The “distinguished sink” S(a; k) as well as its discontinuities a =
am(k) were defined in sec. 3.3.
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on the other hand, we want ¢y to enter J, i.e. we want 2mg <

S(A;2k) < 27g + 73 we choose this, or rather the equivalent require-
ment

G(g,1,k) = [5-5(4;28)] = , (3.8)

as the implicit definition of g. The key to understanding the (integer)
solutions of this equation is the fact that [;-S(A; 2k)] is constant in A
for am(2k) < A < am+1(2k), where am+1(2k) — a,,(2k) = 47wk. Plot-
ting the sequence of values of G(g) = G(g, I, k) for different integers
g, we observe that as g increases by 1, G(g) increases alternately by
1 and by 0, as explained later in this paragraph. This proves that for
any I, k there are exactly two values of g satisfying eq.(3.8). In other
words, if eq. (3.8) has one solution g (for fixed I,k), then it must
have another, either ¢ — 1 or g + 1. Indeed, S(A4,2k) has jumps (k is
fixed) for A-intervals of length @41 — @, = 47k, and changing g by
one results in changing A by 2wk which is exacly half of the distance
4wk between the jumps of S(-,2k). Consequently, if g solves eq. (3.8),
we can change it by +1 or —1 so as to move A in the direction of the
nearest jump thus causing G(g,I, k) to undergo the same change as
g and hence preserving the equality (3.8).

To visualize the dependence of the solution g of (3.8) on the pa-
rameters I, k (which were fixed in the previous paragraph), we observe
that the maximal continuity sets for the solution g of (3.8) are the
wedges (cf. Figure 2.1)

wh = {(I,k): am(2k) < I+ k(g +5in™ ) < amy1(2k), m € Z},

wh = {(LE): am(2k)+2nk < I+ k(S +sin~ 1)
< @m+1(2k) + 27k, m € Z};

the overlapping of these wedges reflects the multiple-valued character
of g(I,k). We turn g(I,k) into a single-valued function by treating
it as defined on the doubly covered half-plane k > 0; we can think of
one layer as consisiting of the union of the “even” wedges w' and the
other layer consisting of the union of the “odd” wedges w".

In conclusion of this section we note that an approximate value

of g is given by g = %_;I,} + O(k°)
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3.6. Construction of the domains D,.
Motivated by the heuristic discussion in the beginning of this
section, we fix an integer n > 3 and consider the triangle

141
2

A={I,k)}:mk<I— <m(n—-1)k, 0<k<ko(n) (3.9)
where ko = ko(n) is going to be specified later in the proof. We treat
A as doubly covered; the integer g(I, k) is thus defined uniquely on
each sheet; we can think of g as taking even values on top and the odd
values on the bottom. Treating each sheet separately, we remove the
neighborhoods of the discontinuities of g, as follows. Fixing e = 75,
we remove “one percent” of the wedges w}, , w);, near their boundaries,
obtaining the “shaved” wedges

Wo={T,k): am(2k)+ek <I+ k(g +sin71 1)
< am+1(2k) — €k, m € Z},

(3.10)

and similarly W'. We observe that the values of g(I, k) on two adja-
cent wedges w,, and w},,, differ by 2; the same holds for the wedges
wy, and w),,; on the other sheet, figure 2.1. This shows that all
wedges on both sheets can be naturally enumerated by the values of
the function g(I, k), as shown in figure 2.1; with this observation, we
assign to any integer g that unique wedge W,, or W}, on which the
function g(I, k) takes that integer value. We will denote that wedge
W,.

Finally, given any g € Z we define the domain D, as the inter-
section

Dy=ANW,.

We note that the section of the union [ J7o D, with the line

g=—0o0
k = const. < ko consists of at least 2([%] -1)= 2([£"T_2)-] -1)
full intervals of length (47 — €)k.

In summary, we have to show that with kg = ko(n) chosen suf-
ficiently small, the Poincaré map F : ¥ — X' is into for any choice
of (I,k) € D,. In the course of the proof we will also obtain a rather
detailed information on the behavior of the solutions.
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Remark: widening the range of (I,k).

The statement of the theorem can be strengthened as follows.
Taking a sequence n = 4,5, ..., we obtain an associated sequence of
triangles A, (given by eq.(3.9)) with the widening aperture and with
the decreasing heights ko(n). The union A of all of these triangles
contains a wedge shown in figure 2.1 with the right boundary tangent
to the I-axis at I = 3(1+ I4). The domains D, can thus be enlarged
by replacing A with A in the definition. We conclude that for any
n > 3 there is k so small that the k = const.—section of the union of
these larger domains consists of at least 2([£"T_22] —1) intervals of full
length (47 — €)k. This shows that many different gap sizes g occur for
small k for different values of I.

3.7. Poincaré mapping F : £ — ¥’ is into.

Let ®(t) be a solution of (1.1) starting at ®(0) € X. Then all
#¢i, 3 =1,2,..,N — 1 stand in Jy and én runs for as long as T; <
1 and Ty > I4; the standing of ¢; follows from the “parametric
nonresonance” lemma A.3 in the Appendix, and the running of ¢n
follows from the “Stopping Lemma” A.2. In the course of this proof
we restrict the range of parameters as dictated by the three lemmas
in the Appendix, without mentioning it each time.

Let ¢4, > 0 be the first time when one of the last two inequalities
on the torques is violated. Because of our choice of I > 1(1 + I}) +
7k, the first inequality to be violated is the one on Tn_; (see eq.
(3.2), (3.2)’ and the discussion), so that we have Tn_1(tsn) = 1 and
hence ¢n_; is about to start running: we recall that the value T' =1
corresponds to the saddle-node bifurcation in the phase plane of the
frozen system L¢ = T, thus justifying the notation ts,. By Lemmas
A.l and A.3 in the Appendix we have |¢n-1 — 5| < r for all

t € [ton,ton + c1k ™3], (3.11)
with some ¢; > 0 independent of k and of I, provided k < ko for a
properly chosen k. We claim that ¢ is in the r—neighborhood of its
sink in J; at the end of this interval. Indeed, this follows from the
stopping lemma A.2 which is applicable due to our assumptions on the
torque I avoiding the bad intervals (eq. (3.10)). It is also clear that
the “resting” pendula ¢, ..., #n—2 are in the O(k)-neighborhoods of
their respective sinks at the end of the interval (3.11). We choose
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now a radius 7 > 0 sufficiently small so that once ¢n enters the r—
neighborhood of the the sink it is captured, i.e. it approaches an O(k)-
neighborhood of that sink in time o(}) (short compared to running
time) and stays there for as long as (0 <) Ty < 1 — ¢, with some
constant ¢ > 0. The choice of r can be made independently of & for
all 0 < k < ko with some kg. Such a choice is possible since at the
time of capture of ¢ we have Ty = I, + O(k) < 1 — ¢'. It remains
now to observe that the condition Ty < 1 — ¢ does, in fact, hold for
as long as (0 <)¢n_1 < ¢°; we have for such ¢°

Tn =I—k(20n —dn-1—dN+1) < I—k(2(27g) — ¢° —27g) + O(k) =
I k(2ng —mg)+ O(k) = I~ k(rg)+ O(k) = 5 (I+ 1) +O(k) < 1-¢;

in the last equation we used the estimates (3.1)’—(3.3)”. We con-
clude that at some ¢t = 7 the particle ¢n—; will reach ¢° while
®4,...,8N_2,®n willliein B, ..., B", B' + 2rwg respectively; the latter
follows from the discussion in sec. 3.4. This shows that ®(7) € &',
q.ed..

The stability of the resulting traveling wave can be proved in
the same way as in [16]. The proof of the existence of the unstable
traveling wave is omitted as well as it does not require new ideas
beyond those used in the proof above and in the paper just quoted.
We note only that the pendula rest at the saddles rather than at the
sinks.

The unstable traveling wave behaves as follows: while one pen-
dulum is running, the others rest near the moving saddles rather than
the sinks. The proof can be obtained by modifying the constructruc-
tions above and using the methods of [16].

Appendix: Three lemmas on stopping and on starting.

The lemmas of this section are the restatements of those proved
in [16] (minus some minor misprints). We are looking at a non—
autonomous system

Lx¢=¢+7$+sing+ K¢ = b(t), (A1)
together with a “frozen”, i.e., autonomous system

Lg¢=a, a = const.
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The “starting lemma” states that if b(t) changes slowly: b(t) = O(k)
and if a solution starts near a sink, then even if a sink disappearsin a
saddle-node bifurcation due to an increase of b, the solution will stay
in a “shadow” of the bifurcated sink for the time O(k™%).

The “stopping lemma” states that if b(¢) stays between two con-
secutive “bad” values am(K), am+1(K) and not too close to these
values, then, given a constant ¢ > 0, however large, it takes time
O(ln+) to travel the distance ¢ from S(am;K) — c to a prescribed
neighborhood of S(an,; K).

The statements of lemmas below use a quantity associated with
the autonomous equation

$+7¢‘5+Sin¢+K¢=a, a = const. (A.2)

This quantity is the value of a which gives rise to the saddle-node
bifurcation near 7; we denote this value by a,, = asn(K). In other
words a,,(K) is defined by the requirement that the equilibrium equa-
tion

sing + K¢ = az,(K)
must have a double root near 7; one concludes from this that
aen(K) =1+ %K +0(K2).
Lemma A.1 (Starting lemma). Assume that for some ¢ > 0 the
right-hand side b(t) satisfies (i), (i), (i22) below:

16(0)] < @gn — ¢ (¥)
b(t)| < cK Vt>0 (1)
b(t) < agn + cK Vt >0, (i11)

and let t,, be the smallest t > 0 for which b(t) = as,. Then for any
v >0, B >0 there exzist positive constants r = r(y,asn — ¢), Ko =
Ko(B), co = co(B) and c1 such that for all 0 < K < Ky, any solution
é(t) with

®(0) € r —neighborhood of the sink of L¢ = b(0) which is nearest g—,
(1v)
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satisfies

|ﬂn—gy<ﬂﬁmgngtsgn+%muv%, (A.3)

and

#(t) < 1 + oK fort <t,, (A.4)

The key point of this lemma states that ¢(t) is near 7 for the time ~
7— after the saddle-node bifurcation. Before stating the next lemma,
we recall that in the notation of sec. 3.3, » = p(¢,I) defines the
graph in the (¢, ¢)—p1ane of the running periodic solution of the forced
pendulum equation ¢ + 7q5 +sin¢ = I; p is 27-periodic in ¢ and is

defined only for I > I,, where I}, is the homoclinic value of the torque
I

Lemma A.2 (Stopping lemma). Let 0 < ¢ < 1 and assume that
the right-hand side b of eq. (A.1) avoids the bad values: am(K) +
enK < b(t) < am1(K) — enK. Choose any ¢;1,c2,> 0 and ¢5 >
2w subject to Iy + ¢y < 1 —¢;. There ezist r = r(cy,7), cs(er,c2),
es(cr,¢3), co(e1) and Ko = Ko(ci,c2) such that for any solution ¢(t)
of eq.(A.1) with initial conditions subject to

Te+ci<am—K¢(0)<1-¢y (A.5)

and
|8(0) — p(6(0), am — K ¢(0))| <, (4.6)
(i)-(v) below hold for all 0 < K < Ky:
(i) ®(t) stays in an O(K)-neighborhood of the running periodic
solution given enough time to settle and while the net torque is larger
than I by o finite amount. More precisely,

|6(2) = P((t), am — K$(t))| < csK
for all t when
K¢(t) > K¢(0) + c2

and

b(t) — K$(t) > I + ca.
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There ezists a (unique) t' = t'(c3) such that
¢(t') = Sa(am, K) — cs; (¢)
There exists t'" > t' such that
. 1
|(é(2), d(t)) — (S(a,K),0)| <r, a= E(am + @mq1), for any t > ¢,
(i4%)

1 c .
0<t'—t'<esln—z, t> fﬁ (iv)
and N
#(t) < Sa(b; K) +c1, Vt=>0, (v)

where b = max, b(t); the condition on b(t) avoiding am(K) is not
necessary for this last statement of the lemma.

We will also need a simple but crucial “parametric nonresonance”
lemma, which states roughly that the pendulum (A.1) cannot “start”
as long as the net torque on it is < 1 and as long as that torque

changes 0(K)-slowly.

Lemma A.3 (Parametric nonresonance). If for some ¢ > 0,
the function b(t) satisfies the estimates (i), (1) of Lemma A.1 for all
0<t<T and for all K > 0 small enough:

b(0) < aen —c
|b(t)] < cK for 0 <t < T,
together with
b(t) < asn, — cK for some ¢ > 0, (132)
then any solution of (A.1) subject to condition (iv) in Lemma A.I
satisfies

8() < 5 +cK, V€ (0,).

Remark. Without the assumption of the slow change of the torque
the conclusion of the lemma would be false. We also note that the
first two conditions (i), (i) of Lemma A.1 are the same as in the last
lemma, while the third condition (447)' states, in constrast with (47%)
that the saddle-node bifurcation is to be avoided.
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