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0. HisToriCcAL REMARKS

In 1911 Lorentz and Einstein had offered an explanation of the fact that
the ratio of energy to the frequency of radiation of an atom remains
constant. During the long time intervals separating two quantum jumps an
atom is exposed to varying surrounding electromagnetic fields which should
supposedly change the ratio. Their explanation was based on the fact that the
surrounding field varies extremely slowly with respect to the frequency of
oscillations of the atom. The idea can be illstrated by a slightly simpler
model—a pendulum (instead of Bohr’s model of an atom) with a slowly
changing length (slowly with respect to the frequency of oscillations of the
pendulum). As it turns out, the ratio of energy of the pendulum to its
frequency changes very little if its length varies slowly enough from one
constant value to another; the pendulum “remembers” the ratio, and the
slower the change the better the memory. I had learned this interesting
historical remark from Wasow [15].

Those parameters of a system which remain nearly constant during a slow
change of a system were named by the physicists the adiabatic invariants,
the word “adiabatic” indicating that one parameter changes slowly with
respect to another—e.g., the length of the pendulum with respect to the phaze
of oscillations.

Precise definition of the concept will be given in Section 1.

In later years the above question was resolved from the point of view of
quantum mechanics; however, the mathematical problem remained of
interest in itself and it came up in other physical situations such as radiation
from antennas and the drift of electromagnetically confined plasmas [15].

Littlewood [8] showed that the above mentioned ratio is an adiabatic
invariant-—more precisely, for a pendulum

X+a’(et)yx=0 (@>0) (0.1)

the change of the ratio of the energy to the frequency is smaller than any
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power of ¢, if € is small, provided a (r) satisfies some additional assumptions,
e.g., one can take a (r) to be a constant outside the interval [—1, 1] and C*.

Wasow [17] strengthened this result. Later Leung and Meyer [7] proved a
more general fact—namely, the existence of n independent adiabatic
invariants of a slowly varying linear Hamiltonian system in R*"x = JH(et) x,
where J = (%, ), I'is n X n identity matrix, H(z) = H(t), whose matrix JH
has all eigenvalues purely imaginary and distinct for all z. Moser [10]
observed that there exists at least one adiabatic invariant even if the eigen-
values collide. An important particular case of this observation arises when
the Hamiltonian matrix H(r) is positive definite.

In this note we consider a more general system—namely, in a slowly
varying linear Hamiltonian system we allow in addition a periodic time
dependence. We point out that the existence of the adiabatic invariants turns
out to be closely related to the theory of strongly stable linear Hamiltonian
systems with periodic coefficients.

1. INTRODUCTION; STATEMENT OF THE RESULT; EXAMPLES

We consider a real linear Hamiltonian system
X = A(t, et, €) x, x € R, (1.1)

where 4 is a Hamiltonian matrix (i.e., 4 =JH(t,et,e) with H” = H,
J=(2 ), I being n X n identity matrix), satisfying

(a) A is periodic in first argument: A(¢ + 1,7, &) = A(t, 7, €).
(b) A is independent of 7 for |z| > 1: (8/dr) A(¢, 1, €) =0 for || > 1.
() Ais C* for all (¢,1,6) € R* X [0, &] (with some g, > 0).

Equation (1.1) is a model of a periodically excited system which is slowly
brought from one state to another; a simple example is a pendulum whose
suspension point oscillates periodically in the vertical direction and whose
length slowly changes during the time (—1/e, 1/¢) from one constant value to
another. For the large times ¢t < —1/¢ or ¢t>1/¢ (1.1) is a “stationary”
system, i.e., it does not depend on “slow” time &t:

X=A( Fl,e)x=A_x. (1.1);

Assume that with each periodic (stable) system X =A,x we can associate
a function I Ap(x) which is an integral of this system. Then I A;(x) are
integrals for “past” and “future” systems correspondingly.

Choose a solution x(f) of (1.1), and call I, (x(t))l,._; =1 _(¢) and
Ly o> ye =1,(8).

In general I_(g) # I, (¢).
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DEFINITION. The function / 4,(x) is called an adiabatic invariant of the
system X = A(t, et, &) x iff for any solution x =x(f,¢) and for any integer
m>0

I,(e)—1 ()= IA+(x(t’ ENlic —ype — L4 _(x(2, Eli> e = O(e™).

Note that the invariant is not defined for the intermediate (nonperiodic)
system (for ¢|t| < 1).

One might say that an adiabatic invariant is asymptotically an integral. It
can be shown, however, that /_ and I, do not coincide in general.

We will show in particular, that system (1.1) has at least one nontrivial
adiabatic invariant under the assumption that the system with fixed slow
time

X=A(t1,8)x (7 fixed) (1.1),

is strongly stable for any 7.

The concept of strong stability is described in the next section; we
conclude this one by stating the result, giving an example and outlining the
method of proof.

THEOREM 1.1. Let the curve of real periodic Hamiltonian systems
(parametrized by 1)

X=A(,1,8)x A € C*®(R* x {0, &])s
9, A(t,1,6)=0  for|7| > 1, (1.1),

lie entirely in the strong stability domain D] (See Section 2 for definition).
Let now the parameter t change slowly, i.e., consider system (1.1).

Then system (1.1) has at least k independent adiabatic invariants, where k
is the number of clusters of symbols in the signature o, all symbols within
each cluster being the same.

Moreover, if in addition a group of eigenvalues corresponding to the
cluster of symbols consists of q subgroups disjoint for all t then there are
(g — 1) additional adiabatic invariants.

In particular, if all the eigenvalues are distinct, then there exist n
independent adiabatic invariants.

ExampLES. 1. As an example we just illustrate the theorem for a
system (1.1) with, say, n=35 (i.e., in R'%). Assume that the corresponding
systems (1), all belong to the same stability domain D§ with 6 = (- 4+——+).
We see that the signature consists of three clusters of the same symbol:
(++4), (—=), (+); therefore, we conclude that there are at least three
independent adiabatic invariants.
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2. As another example, consider a slowly varying Mathieu equation
X+ (a(et) + b(et) cos t) x =0 (1.2)

with a(z), b(r) both C* functions constant for |z| > 1.
Assume that for all 7€ [—1, 1] the “frozen” Mathieu equations

£+ (a(t) + b(r)cos ) x =0  (r fixed) (1.2),

are strongly stable, i.e., that the curve (a(r), b(r)) belongs to a stability
component of Mathieu equation (Fig. 1).

Then (1.2) possesses an adiabatic invariant. Indeed, (1.2) can be written
as a system of the form (1.1) with n= 1.

The fact that (a(7), b(r)) does not leave a stability component means that
the corresponding system does not leave the stability domain. Now, the
signature ¢ of a 1-dimensional system consists of just one symbol: ¢ = (+)
or ¢ = (—); applying Theorem 1.1 we obtain the desired statement.

Before concluding this section with a heuristic explanation of the
mechanism od adiabatic invariance, we outline the proof of Theorem 1.1.

The main point of the argument is to bring the system into such a normal
form that the invariants can be read off immediately, see Wasow [18]. More
precisely, we show that system (1.1) is formally equivalent to the
Schrédinger equation

Z=D(t,et,e)z, D=) gD, —aformalsum, Df=-D,, 1.1y

i.e.,, that there exists a formal real symplectic transformation x = Tz which
preserves real and Hamiltonian character of (1.1),
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DeFINITION. - The function I, (x) is called an adiabatic invariant of the
system X = A(t, e, ¢) x iff for any solution x =x(¢,¢) and for any integer
m>0

1) —1_(e) =1, (x(t )< —ye — Ly _(x(t: )15 ye = O(E™)-

Note that the invariant is not defined for the intermediate (nonperiodic)
system (for ¢ |¢| < 1).

One might say that an adiabatic invariant is asymptotically an integral. It
can be shown, however, that /_ and 7, do not coincide in general.

We will show in particular, that system (1.1) has at least one nontrivial
adiabatic invariant under the assumption that the system with fixed slow
time

X=A(tr1,¢)x (7 fixed) (1.1),

is strongly stable for any 7.

The concept of strong stability is described in the next section; we
conclude this one by stating the result, giving an example and outlining the
method of proof.

THEOREM l.1. Let the curve of real periodic Hamiltonian systems
(parametrized by 1)

x=A(t,t,e)x, AECT(R*X[O0,¢&]),
0, A(t,1,e)=0  for|z| > 1, (1.1),

lie entirely in the strong stability domain D (See Section 2 for definition).
Let now the parameter t change slowly, i.e., consider system (1.1).

Then system (1.1) has at least k independent adiabatic invariants, where k
is the number of clusters of symbols in the signature o, all symbols within
each cluster being the same.

Moreover, if in addition a group of eigenvalues corresponding to the
cluster of symbols consists of q subgroups disjoint for all t then there are
(g9 — 1) additional adiabatic invariants.

In particular, if all the eigenvalues are distinct, then there exist n
independent adiabatic invariants.

ExAMPLES. 1. As an example we just illustrate the theorem for a
system (1.1) with, say, n=35 (i.e.,, in R'?). Assume that the corresponding
systems (1), all belong to the same stability domain Dj with ¢ = (++——+).
We see that the signature consists of three clusters of the same symbol:
(++), (==), (+); therefore, we conclude that there are at least three
independent adiabatic invariants.
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2. As another example, consider a slowly varying Mathieu equation
X+ (a(et) + b(et) cos t) x =0 (1.2)

with a(r), b(r) both C* functions constant for |z| > 1.
Assume that for all ¢ € [—1, 1] the “frozen” Mathieu equations

X+ (a(r) + b(r)cos ) x=0 (r fixed) (1.2),

are strongly stable, i.e., that the curve (a(z), b(r)) belongs to a stability
component of Mathieu equation (Fig. 1).

Then (1.2) possesses an adiabatic invariant. Indeed, (1.2) can be written
as a system of the form (1.1) with n= 1.

The fact that (a(z), b(r)) does not leave a stability component means that
the corresponding system does not leave the stability domain. Now, the
signature ¢ of a l-dimensional system consists of just one symbol: ¢ = (4)
or ¢ = (—); applying Theorem 1.1 we obtain the desired statement.

Before concluding this section with a heuristic explanation of the
mechanism od adiabatic invariance, we outline the proof of Theorem 1.1.

The main point of the argument is to bring the system into such a normal
form that the invariants can be read off immediately, see Wasow [18]. More
precisely, we show that system (1.1) is formally equivalent to the
Schridinger equation

Z=D(t, ¢t ¢) z, D =) ¢"D,—a formal sum, D} =-D,, (1.1)”

i.e., that there exists a formal real symplectic transformation x = Tz which
preserves real and Hamiltonian character of (1.1),

e o]
Tt 1,e)= > €T,
k=0
b
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which reduces (1.1) to (1.1)". Note that (1.1)” can be written as
Z =i(~iD)z, (—iD)* = —iD is Hermitean.

Now, (1.1)” formally has an obvious invariant, namely, the norm, which for
(1.1) is an adiabatic invariant. The symplectic character of the transfor-
mation will allow us to give a simple geometric interpretation to the
adiabatic invariant, see end of Section 6.

We illustrate the mechanism of adiabatic invariance of first order in & on
the example of a slowly changing linear oscillator (0.1).

If a(er) is constant, the phaze point (x,x) moves along the ellipse
x*/2 4+ a’x*/2=E (E is the total energy of the motion) whose area is
A =E/a=x*/2a + ax*/2. This suggests choosing polar coordinates with 4
as a square of polar radius; namely, we set

(ax?/2)"* = /A cos ¢
(x¥2a)"? = \/A sin g,

x=(24/a)"* cos ¢
¥ = (24a)"? sin ¢. (*)

One easily checks that the Jacobian map of this transformation (*) is one,
i.e., the map is symplectic. In fact, 4, ¢ are just the action—angle variables.
Map (*) is, of course, well-defined and symplectic even if a is time-
dependent. The oscillator (0.1) expressed in the action-angle variables (*)
takes form

A/A =¢(a’'/a) cos 2¢ (@' =da(r)/dr)
¢ = —a(l + e(a’/2a) sin 2¢),

from which the first order adiabatic invariance can easily be read off. Indeed,
the second equation states that ¢ changes linearly (up to O(e)) which implies
that in the first equation log 4 and thus 4 changes only by O(g?) during one
change of ¢ by 27, due to the fact that cos 2¢ oscillates with near zero time-
average. Therefore A4 changes by at most O(¢) during time (—1/¢, 1/g).

Because of the crucial role of the oscillatory behaviour of 4 it would be of
interest to understand the geometrical reason behind this phenomenon, rather
than using an explicit calculation.

Here is a heuristic explanation of the oscillatory character of 4. As we
have seen above, 4 is the area of the ellipse x*/2a+ ax?/2=A4 with
a=af(, t), so that 4 = A(P, a), where P = (x, x). Since P is tangent to the
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ellipse, we have (d/dr) A(P, a(et)) = (64/éa) - ea’. To be specific, let a’ > 0;
the sign of 4 is determined by lim,_o(A(P, a + a) — A(P, a))/a; therefore, we
have to trace the sign of the numerator for the various positions of P on the
phase plane. It is easy to see that A(P,a+a)=A(P,a) for ¢(P)=
/4 + 0(a”), where ¢ is the angle variable (*) (not the Euclidean angle), see
Figure. If the ellipse through P is a circle (@=1) then the statement is
obvious; for a +# 1 the ellipse becomes a circle in the action-angle variables;
since the change (*) is symplectic, i.e., area-preserving, the statement about
the areas is still true. The above discussion and the figure make it clear that

The two ellipses through the point P have equal area, i.e.,

A(Q,a+a)> AP, ay=A(P,a+a) > A(R,a + a).

the difference 4(P, a + a) — A(P, «) changes sign at approximately ¢ = 7/4 +
(n/2) k, k=0, 1,2, 3, during one full rotation of P.

We remark in conclusion that the above described mechanism is also
responsible for the adiabatic invariance of a system with n degrees of
freedom: as it turns out such a system can be decomposed asymptotically
into n weakly coupled linear oscillators (under the proper conditions; see

[7]).

2. STRONG STABILITY

The more detailed description of the concept can be found in [3-5,9, 19];
a short exposition is given in [6]. Here we give the results we use, without
proofs.

DEFINITION 2.1. The system %=A(f)x is called stable, iff for any
solution x(¢) there exists a constant C: |x(f)] < C V¢ € R.

DEFINITION 2.2. A linear Hamiltonian system with periodic coefficients
X=JHx, HY()=H@)=H(), HE+1)=H() (2.1)

is called strongly stable iff for some ¢ > 0 any system x =JKx, KT =K =K,
K(t + 1) = K(r) with K near H:||H — K|| < ¢ is stable. Here |l Il is any of the
norms: C, L”.

In particular, a strongly stable system is stable.
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In other words, the system is strongly stable iff its stability survives small
perturbations of the Hamiltonian.

The characteristic property of any real Hamiltonian system is the
following: its fundamental matrix X(¢), with X(0) =1, is symplectic:

X'JX =J,

which is equivalent to saying that X preserves an (indefinite) inner product
[x,y] = (Jx, ):

[Xa, Xb| = |a, b].

For that reason symplectic matrices are also called J-orthogonal.

Conversely, if X(¢) is a differentiable curve in the space of symplectic
matrices, then it is a fundamental solution for some Hamiltonian system.

Symplectic matrices form a group under multiplication, called symplectic
group.

For the periodic system (2.1) we consider the matrix M = X(1) (recall,
X(0) =1I), which by the above remark is symplectic.

M is called the monodromy matrix: it provides the linear transformation
of a vector in a phaze space from its initial position to the position after time
1.

It turns out, that the strong stability of (2.1) is equivalent to the strong
stability of its monodromy matrix M.

DEFINITION 2.3. A symplectic matrix M is called strongly stable iff
there exists ¢ > 0 such that any symplectic matrix M, near M:

|IM—M,|<e¢ (| ~ | is some matrix norm)
is stable:

|Mi| < C for allj =0, +1, +2,..., and for some C independent of .

THEOREM 2.1. System (2.1) is strongly stable iff its monodromy matrix
is strongly stable.

Next we give the necessary and sufficient conditions for a symplectic
matrix to be strongly stable.
Define an indefinite inner product in C*" by

i n
[x.y] =5 Ux.y),  where (x,y)= x5
j=1
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The following properties are easily checked:

(1) Ixy]=[rx]
(2) [% 7]=—|y,x]—in particular, [x,x] =0 if x is real.

A linear subspace V of C*" is called positive (negative) iff for any 0 #x € V'
[x,x] >0 (<0). If V is a positive subspace, then ¥ is a negative subspace,
according to the property 2) of [, ].

A subspace which is either positive or negative we will call definite.

We will need a consequence of the

LEmMMA 2.1. The eigenvectors of the stable symplectic matrix
corresponding to the different eigenvalues are | , -orthogonal.

CoROLLARY 2.1. Two eigenspaces of a stable symplectic matrix
corresponding to the different eigenvalues are mutually |, |-orthogonal.

More generally, if V is a positive invariant subspace, then V is a negative
invariant subspace, and [V, V]={0}. The following is the necessary and
sufficient condition for the strong stability of a matrix.

THEOREM 2.2. A symplectic matrix is strongly stable iff each of its
eigenspaces is definite.

CoRroOLLARY 2.2. A strongly stable matrix does not have real (i.e., +1 or
—1) eigenvalues.

The eigenvalue whose eigenspace is positive (negative) is called an eigen-
value of positive (negative) type.

Remark 2.1. 1 is an eigenvalue of positive type iff 1 is an eigenvalue of
negative type.

Remark 2.2. Strongly stable matrix can have multiple eigen-

values—provided they are definite—i.e., either positive or negative. Theorem

+1 + —ﬂ—

A P
P

FIGURE 2
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FIGURE 3

2.2 provides the homotopic classification of the set of strongly stable
matrices in terms of their spectra.

To any eigenvalue of a strongly stable matrix assign the sign + or —
according to whether it is of positive or negative type.

Write the sequence of n symbols + or — corresponding to the eigenvalues
on the upper semicircle, counted in counterclockwise direction, any sign
written out as many times as the multiplicity of the eigenvalue.

Call this sequence a signature of the matrix and denote it by ¢. For
example, the signature of the matrix with the spectrum on Fig. 3 is
0 = (——+—+). Theorem 2.2 implies

THEOREM 2.3. Two strongly stable matrices can be deformed into each
other within the set of strongly stable matrices iff they have the same
signature.

The set of all matrices with the same signature ¢ is called stability region.
Theorem 2.3 says that stability regions are connected.
For the future reference we make a simple

FIGURE 4
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Remark 2.3. Let the signature o consist of, say, k (1 < k < n) clusters of
the same sign; e.g., 0 = (+ + —+——) consists of four clusters: ++, —, +,

Then the upper half of the spectrum of each matrix in the o-stability
region consists of k groups of eigenvalues, such that no representatives of
two different groups coincide (see Fig. 4).

Returning to the strongly stable linear periodic Hamiltonian systems, we
pose the question: When are the two such systems deformable into each
other without destroying strong stability throughout the deformation?

Clearly, if two systems are homotopic then their monodomy matrices
belong to the same stability region. However, this necessary condition is not
sufficient.

With every system one can associate an integer p, called index, which
together with the signature of the monodromy matrix contains all the infor-
mation about the homotopic class of the system. This integer can be inter-
preted as a certain rotation number—roughly speaking it measures how many
times the fundamental solution X(¢) loops around the “hole” in the group of
symplectic matrices during one period, until X{(¢) reaches the monodromy
matrix X(1).

For the definition of the index we refer to either of [4, 6, 19].

THEOREM 2.4. Two linear periodic Hamiltonian strongly stable systems
can be deformed into each other within the class of such systems iff the

corresponding indices and signatures of their monodromy matrices are the
same.

DEFINITION 2.4. The set of all systems with the index p and the
signature o is called the stability domain D7. It is not hard to check that for
any integer p and any o, D7 is nonempty.

3. THE FIRST STEP IN ASYMPTOTIC REDUCTION

According to the outline in the end of Section 1, we transform first system
(1.1) to the system of the form

¥ =1[B(et, €) + B, (1, et, €)] v,

with the first term containing only slow time-dependence. To construct a
transformation we write the fundamental solution X(t,7,&) of the initial
value problem with fixed

X=At1,e)X, X(0,1,6)=1, 3.1
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in the form given by the Floquet theory:

X(t,7,8) = P(t,7,€) ",

It is not hard to see that P, B can be chosen real, smooth functions of their
arguments, and P is symplectic.

Indeed, choose B(z, ¢) to be a real logarithm of the monodromy matrix of
(3.1): M(z, &) = ™. Namely, we take for each t

B(1,6) = 2_17[ J (M(z,¢) — AD)~"log A dA,
r

Here I is the contour (see Fig. 5) containing all the eigenvalues of M(z, ¢)
(for all 7, €) in its interior, and not containing the negative real axis. Such a
contour exists since the eigenvalues of M(t,¢) depend on 7, &, 0< e ¢,
continuously, and are constant in 7 for |z > 1. Moreover, according to a
remark in the previous section, they never cross the real axis since the
system (3.1) is strongly stable.

For log A we take, of course, a real branch of the logarithm:

log A=log || + 6, 16| < m.

This construction assures the smoothness and reality of B(r,&), which
immediately implies the same properties for P(t, 7, ¢).

Fic. 5. Spectrum of M(z,¢) is confined to the arcs a,, &, for all —o0 <7< o0 (or
equivalently {7]< 1), 0< e g,.
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The symplectic character of P is clear from the following observation:
P(1,7,¢) =1, so that ¢” is symplectic, and thus B is Hamiltonian. Therefore,
P(t,7,€) = Xe ®' is symplectic as a product of two symplectic matrices. The
transformation

x=P(t,et,e)y
reduces (3.1) to
y=(P '4P —P~'P,—eP~'P_)y,
ie.,

y=[B(et,e) + eB,] y, (3.2)

here B, =—P~'P,.
We remark that B, is also Hamiltonian, since system (3.2) is Hamiltonian
and so is the matrix B.

4. Oth ORDER REDUCTION TO THE SKEW-SYMMETRIC FORM

According to the outline we further transform (3.2) in such a way that the
Oth order term becomes skew-symmetric. The transformation has to be real,
symplectic.

One would like to compose a transformation matrix out of
columns—eigenvectors of B(et, £); however, when the eigenvalues of B
collide these eigenvectors might become discontinuous. We note, however,
that the spectrum of M consists of 2k nonintersecting groups (k is the
number of clusters of the same symbols in the signature of M). None of these
groups collide; moreover, since for |7| > 1 all eigenvalues are constant in 7,
these groups never approach each other closer than some positive distance.

We construct an invariant sabspace of M(z, ¢) corresponding to each of
these groups by setting

V. (1, €)= J (M(t,6) — AD)~ ' dAC*™,  m=1,.,2k
YT €)

where y,,(7, €) is a contour enclosing each group and not containing other
eigenvalues. V,, is obviously also an invariant subspace of B. To show that
the dependence of ¥V, on 1, ¢ is smooth, we can choose the contours y,,(z, €)
piecewise constant in 7, &. Exactly k of these subspaces will be of positive
type; the rest k-complex conjugate of the negative type. Reenumerate V', so
that V,,..., ¥, are the positive invariant subspaces of M.

We choose a smooth basis in each V,,(7, €) and denote it ¢, ..., 9,ns ; the
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corresponding basis in ¥, will be the complex conjugate. We obtain thus a
basis for C*",

For the sake of brevity sometimes we omit index m:

P pseves s Povees P 9= (Dj(r’ 8)'
To obtain a symplectic transformation matrix, we transform this basis to a

symplectic one, i.e., we find a transformation

km
Vim; = Z a/(';n)(pmp’ 4.1)
p=1
leaving each V,, invariant, such that
lwj, wi] = (1/20)(Jw;, W) = 6, (4.2a)
lw;» 9.1 =0. (4.2b)
Note that for the matrix ¥ formed out of column vectors y;, ¥,
YI(‘L-’ 8)= (v/l nt Wnlpl T Wn)’
(4.2) is equivalent to
Py =2i. 4.2y

For the sake of brevity we will write (4.1) in the form

V= Zl ajpPp- (4-1),
p=

To find the n X n matrix 4 of coefficients of (4.1)" of coefficients of (4.1)' so
as to satisfy (4.2) we substitute (4.1)' into (4.2a):

n

() vl = [Z a;,0ps Z alq(/’q]zzzajpdlq[(pp’ 94l
g=1 p a

p=1

= (AQA*)jl’

where (Q),,= [¢,,9,] is nXn Hermitean matrix: indeed, for any two
vectors x,y € C*[x, y] = [y, x]. Equation (4.2a) for 4 takes form

AQA* =1,
or

A*4 =07\, (4.3)
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Note, that for any nondegenerate A4, the left hand side of (4.3) is positive
definite, and the equation has a solution—namely, Q"2 if and only if Q is
positive definite. This condition on B holds precisely due to the fact that we
chose ¢;’s as a basis of the positive invariant subspaces.

Indeed, fix any z, ¢ and take an [, ]-orthonormal basis in ¥V, ® --- ® V,,
denoting it by v,,...,v,. That this is possible follows from [V;, V] ={0} as
J# 1 (see Section 2). Thus ¢, =3"%_, T,;v;, and

I(pn’ (pq] = Z ijfql[vj’ v = Z ijqu = (TT*)M’
I i=1

and positive definiteness of 77* (since T is clearly nondegenerate) proves
the statement.

Finally, we obtain from (4.3), A(z,&) = Q Y*(1, &) (smooth) and (4.2a) is
satisfied.

Equation (4.2b) is an automatic consequence of the remark made in
Section 2: V, I7j are [, |-orthogonal as two distinct eigenspaces of a stable
matrix M.

Finally, the already introduced matrix ¥(r,¢) is smooth in 7, ¢ and
satisfies (4.2)'. ¥ is complex; however, ¥R, R = (1/\/2)(! *,) is real and
symplectic.

The transformation

y=VYete)z
takes (3.2) into the system
Z=(B,+¢B,)z, (4.4)

where B, =¥'B,¥— ¥"'¥, and B,= ¥ 'BY is in the block-diagonal
form, consisting of 2k blocks, since ¥ consists of basis of 2k invariant under
B subspaces:

The transformation ¥ is complex; so is the resulting system (4.4).

The following lemma implies, in particular, that B, is skew symmetric. It
establishes the correspondernce between the class of real Hamiltonian systems
on one hand and their complexifications on the other.
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LEMMA 4.1 (Moser [10]). Any real Hamiltonian system x=Ax is
transformed by

I 7
Rx=z, R=(1//2) ’ (4.5)
I —il
into a complex system
Z=Cz, C=RAR™'
with
C
C= (gl, _2>, where C¥=-C,, C;=C,. (4.6)
C, C,

Conversely, (4.6) is a sufficient condition for a complex system to
correspond to a real Hamiltonian system via (4.5).

Remark 4.1. The set of all matrices of form (4.6) constitutes a Lie
algebra, call it 4. The subset of the block diagonal skew symmetric matrices
of the form of B, constitutes a subalgebra A, of A.

We note that the complex system (4.4) is transformed into a real
Hamiltonian system by means of transformation z = R{. Indeed, the resulting
system for { will be real Hamiltonian since it can be obtained from (3.1) by
y = Y¥YR{, where by a previous remark YR is real symplectic. Thus by the
first part of the lemma B} = —B,; our Oth goal is achieved.

We will work with comlex systems with the matrices subject to (4.6); after
the desired formal transformation is found, subsequent application of R will
make it real and Hamiltonian, according to Lemma 4.1.

5. FORMAL SKEW-SYMMETRIZATION-——HIGHER ORDER

Transform (4.4) further to skew symmetrize higher order (in £) terms. We
make a transformation

7= esL(t,et,e)w’ (51)

where L is chosen so that the transformed system is still of the form (4.6); as
we have already indicated, such a choice of L guarantees the preservation of
real and Hamiltonian character of the system.

Also, L(t, 7, €) has to be C* in its arguments and periodic in .

We need to choose L so that (4.4) transforms by (5.1) into a system with

the matrix still in A; the following lemma states that it suffices to take
L e A.
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LEMMA 5.1. A system

¥ =Cx (5.2)

by a change of variables x = ey transforms into

y=(e *Ce" —e t(e"),) y; (5.3)

if A, L € A, then the matrix of (5.3) belongs to A.

Proof. This lemma is just a complex version of the well-known (and
easily checkable) fact that a real symplectic (time-dependent) transformation
preserves the real Hamiltonian character of the system; we use this fact to
prove the lemma.

Note first that T=R '¢*R=€*""* (R as in Lemma 4.1) is a real
symplectic matrix, since R™'LR is real Hamiltonian (Lemma 4.1). Also,
A = R™'CR is real Hamiltonian. Hence by the above remark

T'"AT—T 'T,=R ‘(e *Ce ™t —e*())R
is a real Hamiltonian matrix, and the application of Lemma 4.1 completes

the proof.
Transformation (5.1) takes (4.4) into

W= (B, +e{[By, L] ~ L+ B,} +¢’B,) w, [Bo, L] =BoL — LB,,
(5.4)

with B, B, € A, as follows from the pevious lemma. Also an expression in
braces belongs to A; we have to find L € 4 such that

(B,,L]—L,+B, €4,. (5.5)

We solve this equation in the particular case k = 1 (i.e., there are two blocks
in B,) and sketch the (similar) proof for & > 1.
In notations

B 0 . B,, B L' L
B. = ~ ), - (P “n2 , L:( - )
=(o ) & (s " ror
(5.5) becomes

(BOLl —L'B® B°L°—L°B®

Ay B T (5:3)
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The necessary and sufficient condition for this to hold is that the upper
right block of the left hand side of (5.5) vanish:

BL°—L°B*—L°+B,,=0 (5.6)

To obtain a unique solution of (5.5), we seek L € A4 of the form L =
(p %) satisfying smoothness and periodicity conditions. The general
solution of (5.6) has the form

t
Lt 1,6) ="K e B —j e"OP'B (& 1, 6) e OB GE.
0

A constant n X n matrix K, has to be chosen so as to satisfy the periodicity
requirements

L%t,7,6) =Lt + 1,1, ¢);

using ¢-periodicity of B,,, we obtain a condition on K, equivalent to the
last:

0 —
e""Koe“_’D—KO:f e""B ,(n,7,e) e 2" dy,

-1

or equivalently,

'K, — K, = C(1, ¢), (5.7)

where C is a smooth function of its arguments.

Recall that the eigenvalues of B® are different from those of B°—in fact,
they are bounded away from each other by some positive distance.

Thus (5.7) has a unique solution K(z, ), which is smooth in z, ¢, and the
same then is true for the corresponding L(t, 7, ¢).

Finally, L € A4 follows from (L°)" =L° which is an immediate conse-
quence of the invariance of (5.6) under transposition and of the uniqueness
of its solution. In the case k > 1, e.g., k =2, i.e., when

B 0 0 O
0 B 0 0
Be=lo 0o B o)
0 0 0 B
we look for
L! L°
N (L_O r ) €4
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with
I ( 0 L?

Lo )@r=-L)

Here B' and the upper left corner in L, are p X p, 0 < p < n. From (5.5)
we obtain the same equation (5.6) for L° (B® will be just (&' ).

Equation (5.5) shows that L? must satisfy an analogous equation,
namely,

B'L* ~L’B*—L?+B}, =0

together with smoothness and periodicity conditions. Here B}, is an upper
right p X (n — p) corner in Bj;.

This equation is solved in the same way as (5.6), and its solvability for
periodic smooth L? follows from the fact that the eigenvalues of B' are
bounded away from those of B2 The condition L € A reduces to
(L?)* = —L? and again follows in the same way as for the case k= 1.

Summarizing, we have solved (5.5) for smooth, periodic: L € 4;
according to Lemma 5.1 the matrix of the new system (5.4) still belongs to
Aj; the system is of the form

W= (By(7, &)+ eB,(t, 1, &) —’B,) w (5.8)

with

€ 4,
Bf

skew-symmetric and block diagonal.

The now obvious inductive argument shows the existence for any j (a
natural number) of a matrix L;=L(,1,¢) € 4, smooth and periodic in ¢
such that system (4.4) is brought to the form

J
= (Z s”’B,,,-i-Ej“ﬁjH)u (5.9)

m=0
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by the transformation z = e*L' ... ¢*Liy; here -

B, €4, for m=0,...,J,
B, ea.

Jj+1

The original system (1.1) is therefore transformed into (5.9) by
x=PWe"1 ... ¢“Liy, There exists therefore a formal transformation

T(t, 7, €) = PWett ... eLi...
® .
=> Tt 1, ¢)
j=0

bringing system (1.1) to the form

e 0]
=) ¢Bu, (5.10)

i=o

with B; € 4, (i.e., Bf = —B;) consisting of 2k blocks:

w
[
|

Bj
This proves the formal equivalence of systems (1.1) and (5.10).

Remark 5.1. TR =Y e*T* is real symplectic, according to Lemma 4.1;
thus TR takes (1.1) into i = Du,

E 0
E —F 1
D=<F E) E={ . )  E{=-E, F/=F,
0 E

Remark 5.2. The reduction to a normal form can be carried out in a
context more general than that of the Hamiltonian systems. Namely, let A be
a linear subspace of the space X of the matrix functions A(¢), and let 4, be a
linear subspace of A. We wish to state a general condition which would
guarantee the reducibility of a system

Xx=(B,+eB))x with B,EA, B,cAa (5.12)

to a normal form with the coefficients of the powers of ¢ belonging to 4, .
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The first step consists in finding the class of transformations which leave
the class of systems with their matrices in A invariant.

THEOREM 5.1. Let A, be a linear subspace of Z. If
D,A,c4, where D,B=[A,B]—B,, (5.13)

then any transformation x =eé"y with L € A, leaves the class of systems
X = C(t) x with C € A invariant.

Proof. Let A(s)=e S“Ce't, B(s) =e *(e’"),; our aim is to show that
A()—B(1)E 4 if C(t) €A and (5.13) holds. A simple calculation shows
that

dk
?is—"A(O):A"“’ where A,,,=[4,,L], 4,=4, (5.14)
and
d
ng) =|B,L]|—L,=D,LEA if B(s)€ A with B(0)=0. (5.15)

Equations (5.14) and (5.15) imply correspondingly: A(1), B(1) € 4. Q.E.D.

Assume now that A, A, are given; the reducibility of (5.12) to the normal
form depends on solvability in L € A4, of an inclusion D, L + B € 4, for
any B € A, as we have shown above. This inclusion can be reformulated as
follows. Consider a splitting 4 = A4, @ A¢, and let P be a parallel projection
on A°. Then the last inclusion is solvable iff PDBOA1 = A°, which together
with (5.13) is the desired condition.

In addition to the Hamiltonian systems, this remark can be applied to,
say, the reversible ones (see Moser [11] for their description).

6. ADIABATIC INVARIANTS

To prove the existence of adiabatic invariants, we transform (1.1) by the
real symplectic transformation

x=PWelr ... ¢tmRy = T

the resulting equation is

U= ( e'D; + 6’"“5) v, D(t,1,e)=0 for|z|> 1, (6.1)
j=0
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with D, of the form indicated in the end of the last section:
i 0 Fj 0
E, —F, J I
D= (Fj j)’ E;= s K= E ’
;B 0o Ef o F

Consider first a truncation of (6.1):

m
i=) ¢D;u=Du. (6.2)
j=0
The system (6.2) has k integrals due to its skew and block-diagonal
character.

For [t| > 1/¢ (which corresponds to the periodic system, or to no higher
order terms in (6.2)) the expressions for these integrals will give us k
adibiatic invariants for (1.1).

We first identify these integrals.

Let W, be an invariant subspace in R*" of the matrix D, corresponding to
the blocks E', F'. Note, that any two such subspaces are (, )-orthogonal:
(W,, W,)={0}, p#g—it is a trivial consequence of the “block-diagonal”
character of D. Let Q, to be an orthogonal projection on W,, I = I,..., k.
Then |Q,u|* form a system of k integrals for (6.2). (Their sum is just |u|?
and is an obvious integral.) Using Gronwall’s inequality we easily obtain for
the solution of (6.1):

v=u+o(e"), where u is some solution of (6.2),

or

sup ||Q,0|* —|Q,uf*| = o(e™);

elt<1
Since |Q,u| = const. V¢, and for ¢|¢| > 1|Q,v| = const, we have
Qw7 ve = 1Q]ic —ye = 0(™), for any m > 0.
For the solution x() of (1.1) (x = Tv) this implies
10, T~ X5 e~ | Qlf“lx|t< _ye=0(E"),
and since for ¢>1/e, T=PYR=P(t 1,¢)¥(l,¢) =P, ¥, R, and
analogously for t < —1/e, T=P_¥_R we have

|Q/(P, Y’+R)_1xlf>l/e_ |Qu(P_ Y’,R)_lx|f<_1/s~ 0
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as

-0, I=1l,.,k (6.3)

Thus we obtain

THEOREM 6.1. [,(x)=|Q,P(t,¢) ¥(¢) Rx|* is an adiabatic invariant for
(1.1), where P, ¥, Q are built by the periodic matrix A(t, €) as we have done
earlier.

This proves the existence of k adiabatic invariants and gives their explicit
expression (as far as we can find P).
Restricting ¢ to the integers simplifies (6.3), since P =1 for integer :

—lg—1.12 —lyr—1,.2
|QIR Y,+ x|t>l/e,tinteger - | QIR | 4 x|t< —1le, tinteger ™ 0.

These adiabatic invariants have a simple geometric meaning. Consider
system (6.1) for ¢ < —1/e:

v =D,(—1,¢)v. (6.4)

In the phaze space R*” of this system there are n invariant 2-dimensional
planes p,e) of the matrix D,: Dy p;=p;, each plane corresponds to a
conjugate pair of eigenvalues A;, A;. Moreover, these eigenplanes can be
chosen to be (, )-orthogonal to each other—this is an easy consequence of
the skew character of D,.

These eigenplanes clearly are invariant under the flow of (6.4); the trajec-
tories of (6.4) which remain on these eigenplanes are circles.

Let y, be a closed curve in W, such that its projections on p; are
circles—i.e., trajectories of (6.4), s.t. the orientation of y induces on its
projections orientations coinciding with those given by the flow.

Set I' , = (P(t, —1,6) ¥_(e) R) y; I, , is a closed curve which changes with
¢t periodically—“it breathes.”

The real symplectic character of P¥R implies in the notations x = (3}),
v ={!), that

L X, dx, =f v, dv,.

It 4

The right hand side of this relation is the value of the adiabatic invariant
we have found, and the left hand side is the sum of oriented areas of
projections of I', , on 2-dimensional coordinate planes.
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7. ASYMPTOTIC EQUIVALENCE

In Section 5 we have shown that the original system (1.1) and the
Schrédinger equation (5.10) are formally asymptotically equivalent. Here we
use the procedure of Ritt, see Wasow [14] to show the actual asymptotic
equivalence of the two systems.

THEOREM 7.1. Linear Hamiltonian system (1.1) can be transformed by a
real symplectic transformation T into the Schrodinger equation

i=PBu, with B~Y ¢B,, BI=-B,, (7.1)

with T(t, 7, &) 1-periodic in t, smooth in all arguments.

Proof. According to the theorem in previous section a formal transfor-
mation T=3Y" ¢*T* brings (1.1) to (5.10). If there exists a C* function
T~ Y e*T* then it follows from the construction in the previous section,
that in the transformed system © = Bv the matrix-function B~ Y &“B,.
Moreover, B~ 3 ¢*B, uniformly in ¢, 7 if T~ T, T.~3 eT%,
T,~ 3 ¢*T¢ uniformly. The proof therefore reduces to showing that there
exists a C* function 7(#, 7, ¢) on R? X [0, ¢,] such that

T~ Ty T,~Y T T,~> ... (1.2)
uniformly in ¢, 7.
Set
N o0
T(t,r,e)= > ale) T'¢ 1, ¢) (7.3)
k=0

(see [14]), with
ae)=1 for k=0, 1

=1—eg Ve for k=2,..,

where each g, is to be chosen so large that the series and its ¢ and t
derivatives converge uniformly. Namely, take

J ka R
i > (t.t.e}’lelfgz)‘xlo,e} (ITk!’ |a'7*|’ 161: |)
1<Jj<k

then for any m >0 and k& > max(2, m)

1
|07k a,(e) T| < & n|8;"T"| <e,
k

the same for o7
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This shows that 7T defined by (7.3) is a C* function. Relations (7.2) follows
immediately from the uniform convergence of the series (7.3), 9, (7.3), 4,
(7.3) and the fact that a,(e) ~ 1: indeed, for T° we have:

N N N
T— 3 &T*=T—Y gha(e) T + D eMa, — 1) T
k=0 k=0 k=0

As £-0, the last term tends to O uniformly in ¢ 7, since 3C > 0:
|T(t, 7, €)| < C for (t,1,6) € R* X [0, &]. The rest of the relations in (7.2)
are established analogously. This concludes the proof of Theorem 7.1.
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