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Abstract

Louis Poinsot has shown in 1854 that the motion of a rigid body, with
one of its points fixed, can be described as the rolling without slipping
of one cone, the ‘body cone’, along another, the ‘space cone’, with their
common vertex at the fixed point. This description has been further
refined by the second author in 1996, relating the geodesic curvatures of
the spherical curves formed by intersecting the cones with the unit sphere
in Euclidean R3, thus enabling a reconstruction of the motion of the body
from knowledge of the space cone together with the (time dependent)
magnitude of the angular velocity vector. In this article we show that a
similar description exists for a time dependent family of unimodular 2×2
matrices in terms of rolling cones in 3-dimensional Minkowski space R2,1

and the associated ‘pseudo spherical’ curves, in either the hyperbolic plane
H2 or its Lorentzian analog H1,1. In particular, this yields an apparently
new geometric interpretation of Schrödinger’s (or Hill’s) equation ẍ +
q(t)x = 0 in terms of rolling without slipping of curves in the hyperbolic
plane.
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1 Introduction

The motion of a rigid body in R3, with one of its points fixed, consists at every
moment of rotation about an instantaneous axis passing through the fixed point,
also called the angular velocity axis. This is well known and easy to imagine
(see for example the book [1, p. 125]). What is perhaps less well known is the
following remarkable 19th century theorem of Louis Poinsot [5], describing the
motion in terms of rolling without slipping of one cone along another:

When a body is continuously moving round one of its points, which
is fixed, the locus of the instantaneous axis in the body is a cone,
whose vertex is at the fixed point: the locus of the instantaneous axis
in space is also a cone whose vertex is at the fixed point [. . . ] the
actual motion of the body can be obtained by making the former of
these cones (supposed to be rigidly connected with the body) roll on
the latter cone (supposed to be fixed in space). (Quoted from [6,
p. 2]). See Figure 1.

Space cone
(stationary)

(rolling)

Rotation axis

ω

Body cone

Figure 1: Poinsot’s Theorem: the body cone is rolling without slipping on the space
cone, and is tangent to it along the instantaneous axis of rotation.

As the second author has shown [4], this rolling cones description can be
made more precise: if we intersect each of the cones in Poinsot’s theorem with
a sphere centered at the fixed point we obtain a pair of spherical curves whose
geodesic curvatures are related by the magnitude of the angular velocity vector
ω, enabling a reconstruction of the motion of the body from knowledge of the
space cone together with the (time dependent) magnitude |ω| (see Theorem 1
below for the precise statement).

Poinsot’s Theorem can be reformulated more abstractly as a statement
about smooth curves in the orthogonal group SO3. It is natural to look for
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an analog for other groups. In this paper we do that for the Möbius group
PSL2(R) ' SO2,1. Poinsot’s Theorem and its refinement of [4] then become
a statement about the phase flow of the non-autonomous Hamiltonian linear
system of ordinary differential equations

ẋ(t) = a(t)x(t), (1)

where x(t) ∈ R2 and a = a(t) ∈ sl2(R), the space of 2 × 2 traceless matrices.
The salient features of this interpretation are:

• Solving equation (1) is equivalent to reconstructing a curve on a ‘pseudo-
sphere’ in Minkowski’s space R2,1 from its geodesic curvature.

• The phase flow of (1) can be visualized as a rigid motion in R2,1, under
which motion one cone rolls on another without slipping.

• The rigid motion, and thus the solutions to equation(1), is completely
determined by two cones, the ‘body cone’ and the ‘space cone’, lying in
R2,1 and given explicitly in terms of a(t).

• Unless a(t) is a commuting family of matrices, the system (1) cannot be

solved explicitly by the näıve formula x(t) = exp
(∫ t

0
a(τ)dτ

)
x(0) (unlike

in the scalar version of this equation). Nevertheless, the rolling cones
interpretation allows for a correction of this formula in terms of parallel
transport along curves in the pseudo-sphere in R2,1. Interestingly, the
cumulative angle of rotation appears in the solution despite the fact that
the a(t) do not commute.

Plan of the paper. In the next section, Section 2, we describe in more detail
Poinsot’s Theorem and its refinement due to [4], see Theorem 1. In Section 3 we
formulate our main result, Theorem 2, generalizing Theorem 1 to rigid motions
in Minkowski’s space, thus giving a novel ‘rolling cones’ interpretation to the
phase flow of system (1). Section 4 contains a proof of both Theorem 1 and 2 in
a unified group theoretic language, so as to make the generalization from SO3

to SL2(R) straightforward, see Theorem 3. In the last two sections, we illus-
trate our main result via two examples of equation (1): periodically perturbed
harmonic oscillator (Mathieu’s equation) and the 2D bicycling equation.

2 Background

Consider the motion of a rigid body in Euclidean R3, with one of its points fixed
at the origin. If we follow any of the points of the body, initially at x(0), then
its position x(t) ∈ R3 at time t satisfies

ẋ(t) = ω(t)× x(t),
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where ω(t) ∈ R3 is the associated angular velocity vector – a vector aligned
with the axis of rotation, whose length |ω(t)| is the angular velocity of the body
about the axis of rotation and whose direction is given by the ‘right hand rule’.

Denote by aω : R3 → R3 the map x 7→ ω× x; then the last equation can be
rewritten as the non-autonomous linear system

ẋ(t) = a(t)x(t), where x(t) ∈ R3, a(t) = aω(t) ∈ so3, (2)

and where so3 denotes the space of 3 × 3 antisymmetric real matrices. An
equation equivalent to (2) is the equation for its fundamental solution matrix
g(t) ∈ SO3 (the group of 3× 3 orthogonal matrices with determinant 1), satis-
fying

ġ(t) = a(t)g(t), g(0) = I, where g(t) ∈ SO3, a(t) = aω(t) ∈ so3, (3)

and I denotes the identity 3 × 3 matrix. The relation between the solutions of
equations (2) and (3) is x(t) = g(t)x(0).

Figure 2 illustrates the above mentioned Poinsot theorem and the geomet-
rical solution of equation (3). In the figure, Cspace denotes the locus of rotation
axes of the body, the ‘space cone’ (the cone, with vertex at the origin, generated
by the space curve ω(t)). Viewed from a body-fixed frame, the rotation axes
form another cone, the ‘body cone’ Cbody, rigidly attached to the body, with
vertex at the origin as well. Then, as the body moves according to equation
(3), the cone Cbody (rigidly affixed to the body) rolls without slipping along
Cspace: at each moment, Cbody is tangent to Cspace along the instantaneous axis
of rotation, which is (momentarily) at rest.

As shown in [4], this rolling cones description can be made more precise,
as follows. For a given non-vanishing ‘space angular velocity’ curve ω(t) and
a solution g(t) to equation (3), let Ω(t) = g(t)−1ω(t) be the ‘body angular
velocity’ curve, and n(t) := ω(t)/|ω(t)|,N(t) := Ω(t)/|Ω(t)| the (parametrized)
intersections of Cspace,Cbody (respectively) with the unit sphere S2 ⊂ R3.

Theorem 1 ([4]). (1) g(t) rolls N without slipping along n; that is: g(t)N(t) =
n(t), g(t)Ṅ(t) = ṅ(t), for all t. See Figure 2.

(2) For non vanishing ṅ, the (spherical) geodesic curvatures K, k of N,n (re-
spectively) are related by

K = k − |ω|
|ṅ|

. (4)

(3) Let R[Φ(t)] be the rotation about ω(0) by the angle Φ(t) =
∫ t

0
|ω(τ)|dτ .

Then
g(t) = Pn(t) ◦R[Φ(t)] ◦ PN(t)−1, (5)

where PN(t) is (spherical) parallel transport along N from N(0) to N(t),
extended to R3 by N(0) 7→ N(t) and similarly for Pn(t).
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n(t) = N(t)
ṅ(t0)

n(t0)

Cspace

n

C
body

N

n(0) = N(0)
Ṅ(t0)

n

N

g(t0)Ṅ(t0) = ṅ(t0)

g(t)Ṅ(t0)

Figure 2: A view of the cone Cbody rolling along the cone Cspace without slipping
under the rigid motion g(t). The curves N, n are the intersections of these cones with
the unit sphere.

Statement (1) is just a reformulation of Poinsot Theorem. Statement (2),
taken together with statement (1), can be thought of as a geometrical/mechanical
‘recipe’ for solving equation (3): given a ‘space angular velocity curve’ ω(t), one
uses equation (4) to construct N(t) from its geodesic curvature and the initial
conditions N(0) = n(0), Ṅ(0) = ṅ(0). Then g(t) ∈ SO3 is the (unique) rigid
motion mapping N(t) 7→ n(t), Ṅ(t) 7→ ṅ(t).

Statement (3) of Theorem 1 is a curious fact regarding ‘composition of a
non-commuting family of matrices’. Namely, the difficulty of solving (3) ex-
plicitly lies in the fact that, in general, the matrices a(t) do not commute for
different values of t. If, on the other hand, the axis of rotation is fixed, i.e.,
ω(t) = ω(t)e for some fixed unit vector e and a scalar function ω(t), so that
the a(t) commute, then g(t) is the rotation about e by the cumulative angle∫ t

0
ω(τ)dτ, i.e., g(t) = exp

(∫ t
0
a(τ)dτ

)
is the solution to equation (3), just as

in the scalar version of equation (3). In spite of the lack of commutativity in
general, the cumulative angle still appears in the decomposition formula (5),
with an appropriate correction by parallel translations.

Here is a heuristic explanation for the decomposition formula (5). As the
body curve N rolls along n in some time range 0 ≤ t ≤ t0, the vector Ṅ(t0)
in Figure 2 swings over and coincides with ṅ(t0) at t = t0. The first key idea
is that this hard-to-describe motion can be decomposed into two simpler ones,
as shown in Figure 3: tangent transport T−1

N of Ṅ(t0) along N backwards to
N(0) = n(0), followed by tangent transport Tn forward along n to n(t0):

ṅ(t0) = (Tn ◦ T−1
N ) Ṅ(t0). (6)

But
Tn = Pn ◦R(θn), TN = PN ◦R(θN),

where Pn denotes parallel transport along n, θn is the integral of the geodesic
curvature of n and R(θ) is the rotation around n(0) = N(0) through the angle
θ; thus (6) becomes

ṅ(t0) = g(t0) Ṅ(t0) = (Pn ◦R(θn − θN) ◦ P−1
N ) Ṅ(t0). (7)
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Ṅ(t0)

N(t0)

N
T−1
N Ṅ(t0)

n
n(t0)

ṅ(t0)

Figure 3: The map Ṅ(t0) 7→ ṅ(t0) is a composition of tangent transport backwards
along N and forward along n. This composition can be accomplished instead by
parallel transport backwards along N, followed by a rotation around the cusp point,
followed by parallel transport forward along n. The angle of the rotation around the
cusp turns out to be the integral of the angular velocity of the rigid motions g(t) ∈ SO3.

The second key idea is the observation that the angle θn − θN turns out to
be the time integral of the angular velocity |ω(t)| of the rigid motion g(t) – this
is made precise by equation (4), relating the geodesic curvatures of N and of n.

3 The main result

We apply the above ideas to gain geometrical insight into the linear system of
ordinary differential equations

ẋ(t) = a(t)x(t), where x(t) ∈ R2, a(t) ∈ sl2(R), (8)

and where sl2(R) denotes the set of traceless 2 × 2 matrices. This system in-
cludes, among numerous applications in mathematics, physics and engineering,
the 1-dimensional Schrödinger’s, or Hill’s, equation

ẍ+ q(t)x = 0,

where x = x(t) and q(t) are real functions. The last equation is obtained as a
special case of (8) by setting

x(t) =

(
x(t)

ẋ(t)

)
, a(t) =

(
0 1
−q(t) 0

)
.

Another special case of (8) is the ‘planar bicycle equation’ (see Section 7 below).
The fundamental solution matrix g of (8), defined (as before) by

ġ(t) = a(t)g(t), g(0) = I, (9)

lies in SL2(R), the group of 2 × 2 matrices with determinant 1. As before, the
relation between the solutions of equations (8) and (9) is x(t) = g(t)x(0).

The starting point of our approach is the observation that the linear area–
preserving flow in R2 of equation (8) can equivalently be viewed as a rigid motion
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in the Lie algebra sl2(R). More precisely, instead of considering the motion of
points in R2 under g ∈ SL2(R), we consider the motion of points in sl2(R), the
3–dimensional Lie algebra of SL2(R), given by conjugation with g:

Adg : sl2(R)→ sl2(R), a 7→ gag−1, a ∈ sl2(R), g ∈ SL2(R).

Now Adg, being a conjugation, preserves the spectrum of each a ∈ sl2(R), and in
particular, det(a). Since tr(a) = 0, det(a) turns out to be an indefinite quadratic
form, which makes sl2(R) a Minkowski space (we provide the details later in
Section 4.1). Thus, Adg is an orthogonal transformation of the Minkowski space
sl2(R) ' R2,1, a ‘rigid motion’. The map g 7→ Adg is 2 to 1, so up to a minor
ambiguity, all properties of g can be recovered from those of Adg. For instance,
g is elliptic, i.e., conjugate to a rotation of R2 through an angle θ, if and only
if Adg is a rigid rotation in sl2(R) (in the Minkowski metric) around a timelike
axis, rotating the orthogonal (spacelike) plane through the angle 2θ; similar
statements hold for parabolic and hyperbolic elements in SL2(R).

One advantage of looking at Adg acting on sl2(R) (versus g acting on R2)
is that a geometry (hidden heretofore in R2) is revealed; the already mentioned
orthogonality of Adg is one example. Furthermore, orthogonal transformations
of Minkowski’s space, just like Euclidean ones, have axes of rotation: lightlike
for the elliptic rotations and spacelike for the hyperbolic ones; in R2, none of
this is visible.

By carrying through this analogy between Euclidean and Minkowski rigid
motions, we then obtain, with some minor modifications due to sign and nullity
details, the following almost-verbatim Minkowski version of Theorem 1.

Theorem 2. Let a(t) ∈ sl2(R) be a given non-vanishing ‘space angular velocity’
curve with non vanishing |a| := 2

√
|det(a)| and let g(t) ∈ SL2(R) be the solution

to ġ = ag, g(0) = I. Let A = g−1ag be the associated ‘body angular velocity’
curve and n := a/|a|,N := A/|A| be the projections of a,A (respectively) on the
unit ‘pseudo-sphere’ Σ ⊂ sl2(R) (either the hyperbolic plane H2 or its Lorentzian
analog H1,1, depending on the sign of det(a); see Section 4.1 below for details).
Then

(1) g(t) rolls N without slipping along n, i.e., Adg(t)N(t) = n(t), Adg(t)Ṅ(t) =
ṅ(t), for all t.

(2) For non vanishing |ṅ|, the (pseudo-spherical) geodesic curvatures K, k of
N,n (respectively) are related by

K = k − |ω|
|ṅ|

.

(3) Let R[Φ(t)] be the (pseudo) rotation about a(0) by the angle Φ(t) =
∫ t

0
|ω(τ)|dτ .

Then
Adg(t) = Pn(t) ◦R[Φ(t)] ◦ PN(t)−1,

where PN(t) is parallel transport along N from N(0) to N(t), extended to
sl2(R) by N(0) 7→ N(t) and similarly for Pn(t).
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4 Notation and setup

We start with a review of some notation and terminology, mostly standard.

4.1 Geometry and algebra of SO3 and SL2(R)
Denote in the following byG either SO3 or SL2(R) and by g its Lie algebra, either
so3 or sl2(R), respectively. The conjugation action of G on g, Ad : G→ GL(g),
is denoted by

Adg(a) = g · a := gag−1, g ∈ G, a ∈ g. (10)

Define an Ad-invariant inner product on g by

〈a, b〉 := λ tr(ab), where λ = − 1
2 for g = so3 and λ = 2 for g = sl2(R). (11)

Our choice of the normalization factor for each g will be explained in a moment.
In either case, we set

|a| :=
√
|〈a, a〉|.

The Ad-invariance of 〈 , 〉 implies that b 7→ [a, b] = ab− ba is an anti symmetric
operator on g with respect to 〈 , 〉, i.e., 〈[a, b], c〉 = −〈b, [a, c]〉 for all a, b, c ∈ g,
hence

〈[a, b], a〉 = 0, ∀a, b ∈ g. (12)

Let us examine the resulting geometry of g in each of the two cases.

Case 1: g = so3. With the choice λ = − 1
2 in (11), 〈a, b〉 := −tr(ab)/2 is a

positive definite inner product on so3, the image of the standard inner product
on R3 under the isomorphism R3 → so3, ω 7→ aω ∈ so3, where aωx := ω × x.
Explicitly,

ω =

 ω1

ω2

ω3

 7→ aω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (13)

Furthermore, under this isomorphism, the cross product u × v corresponds to
the Lie bracket [a, b] = ab−ba and the standard action of SO3 on R3 corresponds
to the conjugation action (10); that is,

〈au, av〉 = u · v, [au, av] = au×v, g · au = agu, for g ∈ SO3, u,v ∈ R3.

Case 2: g = sl2(R). The Lie algebra sl2(R) consists of traceless 2 × 2 real
matrices, which we choose to write in the form

a =
1

2

(
a1 a2 + a3

a2 − a3 −a1

)
,

so that 〈a, b〉 := 2tr(ab) = a1b1+a2b2−a3b3. Thus the inner product is indefinite,
of signature + +− (the ‘spacelike sign convention’). A simpler formula for the
associated quadratic form is

〈a, a〉 = (a1)2 + (a2)2 − (a3)2 = −4 det(a), a ∈ sl2(R).
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An element a ∈ sl2(R) is called timelike if 〈a, a〉 < 0, lightlike (or null) if
〈a, a〉 = 0 and spacelike if 〈a, a〉 > 0. These are the three causal types of elements
in sl2(R), also referred to as elliptic, parabolic and hyperbolic, respectively.

The reason for our choice λ = 2 in formula (11) for g = sl2(R) is the following
analog of a familiar property of the vector product in R3.

Lemma 4.1. If a, b ∈ sl2(R) is an orthonormal pair, i.e., |a| = |b| = 1 and
〈a, b〉 = 0, then (a, b, [a, b]) is an orthonormal frame in sl2(R), positively oriented
with respect to the standard volume form a1 ∧ a2 ∧ a3 if a, b are spacelike, and
negatively oriented if one of them is timelike.

Proof. It is easy to check that

i :=
1

2

(
1 0
0 −1

)
, j :=

1

2

(
0 1
1 0

)
, k :=

1

2

(
0 1
−1 0

)
(14)

is an orthonormal basis of sl2(R), dual to a1, a2, a3, hence it is positively oriented
with respect to a1 ∧ a2 ∧ a3. Furthermore, i, j are spacelike and k is timelike,
satisfying

[i, j] = k, [j,k] = −i, [k, i] = −j. (15)

Now let a, b ∈ sl2(R) be an orthonormal pair. Since a, b are not null and
orthogonal, both are spacelike or one is timelike and the other spacelike. In
the first case, where a, b are spacelike orthogonal unit vectors, by conjugating
by an appropriate element of SL2(R) and (possibly) permuting them (neither
operation changes the orientation of (a, b, [a, b])), we can assume that a = i,
b = j, thus [a, b] = k, hence (a, b, [a, b]) is a positively oriented orthonormal
frame.

In the second case, where one of a, b is timelike and the other spacelike, by
(possibly) permuting a and b and changing a to −a (these operations do not
affect the orientation of (a, b, [a, b])), we can assume that a is timelike future
pointing (a3 > 0) and b is spacelike. Next, by conjugating by an appropriate
element of SL2(R), we can assume that a = k and b = i, so that [a, b] = −j, and
hence (a, b, [a, b]) is a negatively oriented orthonormal frame, as claimed.

Remark 4.2. The commutation relations (15) differ from the analogous rela-
tions for the cross product in R3 by the “−” sign when the timelike vector i
occurs in the commutator. Putting it differently, when taking the cross product
in the Minkowski space sl2(R), one uses the ‘right-hand rule’ to determine the
direction of the cross product of two spacelike vectors, and the ‘left-hand rule’
whenever a timelike vector participates in the cross product.

4.2 Rolling without slipping

Denote by Σ ⊂ g the unit (pseudo) sphere, i.e., the set of elements a ∈ g
with 〈a, a〉 = ±1. Thus, for g = so3, Σ is the standard 2-sphere S2 = {a ∈
so3 | 〈a, a〉 = 1}, while for g = sl2(R), Σ is either H2 := {a ∈ sl2(R) | 〈a, a〉 =
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a2

a1

H2 = {〈a, a〉 = −1}

a3

N = {〈a, a〉 = 0}H1,1 = {〈a, a〉 = 1}

a2

a1

a3

a2

a1

a3

Figure 4: Level sets of 〈a, a〉 = (a1)2 + (a2)2 − (a3)2 in sl2(R).

−1} (hyperboloid of two sheets), or H1,1 := {a ∈ sl2(R) | 〈a, a〉 = 1} (hyper-
boloid of one sheet), see Figure 4.

Now let g(t) be a smoothly parametrized curve in G with g(0) = I (the
identity element in G). Define

A(t) := g−1(t) ġ(t), a(t) := ġ(t) g−1(t) ∈ g, (16)

the body and space angular velocities, respectively, and

N(t) := A(t)/|A(t)|, n(t) := a(t)/|a(t)|, (17)

the radial projections of A(t), a(t) (respectively) onto Σ ⊂ g. Note that in
order to define the (pseudo) spherical curves N(t),n(t), we need to assume that
|a(t)| 6= 0 for all t, which we assume henceforth. For G = SO3 this amounts to
a(t) 6= 0; for G = SL2(R) it means that a(t) is non null for all t, i.e., it is either
spacelike or timelike.

From equations (10) and (16), we have

ġ = ag = gA, a = g ·A, n = g ·N, g(0) = I. (18)

Remark 4.3 (About notation). Sometimes, as in (18), we suppress the explicit
dependence on t, i.e., g = g(t), a = a(t), etc.

Definition 4.4 (Rolling without slipping). Let Γ(t), γ(t) be two parametrized
curves in g. A rolling without slipping of Γ along γ is a parametrized curve g(t)
in G, satisfying for all t the contact and no slip conditions:

g(t) · Γ(t) = γ(t), (19)

g(t) · Γ̇(t) = γ̇(t). (20)

See Figure 5.

10



g(t)

Γ

γ

g(t)·Γ
Γ(t)

g(t)·Γ(t)

γ(t)

Figure 5: Rolling of a curve Γ along γ via a family of isometries Adg(t).

Lemma 4.5. The no-slip condition (20) is equivalent to

[a, γ] = 0, (21)

where a = ġg−1. This expresses the vanishing of the velocity of the ‘material
point’ of the moving curve at the contact point g(t) ·Γ(t) between the two curves.

Proof. Taking the derivative with respect to t of equation (19) and using equa-
tions (18),

[a, γ] + g · Γ̇ = γ̇.

Thus g · Γ̇ = γ̇ (equation (20)) is equivalent to [a, γ] = 0.

4.3 Geodesic curvature

Let γ(t) be a smoothly parametrized (pseudo) spherical curve in Σ ⊂ g with
nowhere null tangent, i.e., |γ̇| does not vanish, and let γ′ := γ̇/|γ̇| be the unit
tangent along γ. Then (γ, γ′, [γ, γ′]) is a ‘moving’ orthonormal frame along γ.

Notation. We denote henceforth by dot derivative along a curve γ with respect
to an arbitrary parameter t, γ̇ := dγ/dt, and by prime derivative with respect
to arc length parameter s, γ′ := dγ/ds = γ̇/|γ̇| (provided |γ̇| does not vanish).

Definition 4.6. The geodesic curvature of an oriented (pseudo) spherical curve
γ in Σ ⊂ g with nowhere null tangent is its normal acceleration, i.e., the coeffi-
cient of [γ, γ′] in the decomposition of γ′′ as a linear combination of γ, γ′, [γ, γ′].

This definition can be also expressed conveniently as

γ′′ ≡ k[γ, γ′] mod γ, γ′. (22)

For an arbitrary parametrization γ(t), γ′′ ≡ γ̈/|γ̇|2 ≡ k[γ, γ′] mod γ, γ′, from
which follows

γ̈ ≡ k|γ̇|[γ, γ̇] mod γ, γ̇.

Remark 4.7 (About the sign of the geodesic curvature). Our Definition 4.6
of geodesic curvature may differ in sign from other common definitions in the
literature, since this sign depends on the choice of a unit normal to the curve.
Our choice of unit normal [γ, γ′] is mostly for simplicity in subsequent formulas.
At any rate, all applications of this definition in this article are invariant under
sign change of k. For example, equation (25) below.
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4.4 Parallel transport

A vector field v(t) tangent to Σ along γ(t) is parallel if v̇(t) ⊥ Tγ(t)Σ for all t.
That is,

v̇ ≡ 0 mod γ.

Any initial vector v(0) ∈ Tγ(0)Σ can be extended uniquely to parallel vector field
v(t) along γ, by solving the last displayed equation (a linear system of ODEs).
The resulting map Pγ(t) : Tγ(0)Σ → Tγ(t)Σ, v(0) 7→ v(t), is an isometry (with
respect to the restriction of 〈 , 〉 to Σ), called parallel transport along γ.

The two notions, geodesic curvature and parallel transport, are related as
follows. Let γ(t) be a (pseudo) spherical curve with non vanishing |γ̇| and v(t)
the parallel transport of γ′(0) along γ (or any parallel vector field along γ with
the same casual type as γ′). At each point γ(t) along the curve, γ′ is related
to v by a unique orientation preserving isometry R(θ) of Tγ(t)Σ, with ‘rotation
angle’ θ. That is, in the Riemannian case,

γ′ = R(θ)v = (cos θ)v + (sin θ)[γ, v], Σ = S2 or H2, (23)

and in the Lorentzian case

γ′ = R(θ)v = (cosh θ)v + (sinh θ)[γ, v], Σ = H1,1. (24)

Lemma 4.8. For any oriented curve γ in Σ with non-null tangent, its geodesic
curvature is the rate of change, with respect to arc length, of the ‘rotation angle’
of the unit tangent γ′, relative to a parallel unit vector of the same casual type
as γ′, as defined in equations (23)-(24); that is,

k = θ′.

It follows that

γ′(t) = R [θ(t)]Pγ(t)γ′(0) = Pγ(t)R [θ(t)] γ′(0),

where

θ(t) =

∫ Lt

0

k ds =

∫ t

0

k|γ̇|dτ,

and where s is an arc length parameter along γ, Lt is the length of γ between
γ(0) and γ(t) and τ is the same parameter as t.

Proof. From γ′ = R(θ)v follows, by a simple calculation, γ′′ = θ′(∂θR(θ))v +
R(θ)v′ ≡ θ′[γ,R(θ)v] = θ′[γ, γ′] mod γ, implying k = θ′.

Remark 4.9. In case Σ = H1,1, |γ̇(t0)| may vanish even if γ̇(t0) 6= 0. Then
one cannot reparametrize γ by arc length and k becomes infinite at t = t0.
It would be interesting to understand the significance of this phenomena for a
linear system ġ = ag.
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5 The combined theorem and its proof

With the above background we now state and prove the following result, of
which Theorems 1 and 2 are special cases.

Theorem 3. Let a(t) be smoothly parametrized curve in g with non-vanishing
|ȧ|, and g(t) ∈ G the solution to ġ = ag, g(0) = I. Set A(t) = g−1(t)a(t), and
N(t),n(t) the corresponding normalized (pseudo) spherical curves in Σ ⊂ g, as
defined in equations (16)–(17). Then

(1) (Poinsot Theorem) g(t) rolls without slipping the curve A(t) along a(t) and
N(t) along n(t).

(2) (The reconstruction formula) If |ṅ| is non-vanishing then the geodesic cur-
vatures K, k of the (pseudo) spherical curves N,n (respectively) are related
by

K = k − |a|
|ṅ|

. (25)

(3) (The decomposition formula)

Adg(t) = P̃n(t) ◦R [Φ(t)] ◦ (P̃N(t))−1,

where P̃n(t) is parallel transport Tn(0)Σ → Tn(t)Σ along n, extended to g

by n(0) 7→ n(t), similarly for P̃N(t), and R [Φ(t)] is the (pseudo) rotation

around the axis a(0) by the angle Φ(t) =
∫ t

0
|a(τ)|dτ.

Proof. (1) If γ = g · Γ then γ̇ = ġ · Γ + g · Γ̇ = [a, γ] + g · Γ̇. For γ = a,Γ = A,
since a = g · A and [a, a] = 0, we get ȧ = g · Ȧ. Next, n = g · N implies
ṅ = [a,n] + g · Ṅ = |a|−1[a, a] + g · Ṅ = g · Ṅ.

(2) Applying g to N̈ ≡ K|Ṅ|[N, Ṅ] (mod N, Ṅ), we obtain g·N̈ ≡ K|ṅ|[n, ṅ] (mod n, ṅ).
Taking derivative of ṅ = g · Ṅ, we get n̈ = [a, ṅ] + g · N̈ = |a|[n, ṅ] + g · N̈ ≡
(|a| + K|ṅ|)[n, ṅ] (mod n, ṅ). On the other hand, n̈ ≡ k|ṅ|[n, ṅ] (mod n, ṅ),
hence |a|+K|ṅ| = k|ṅ|, which gives formula (25).

(3) Both sides of the equation are orientation preserving isometries of g, mapping
N(t) 7→ n(t), hence it is enough to show that they coincide on N′(t). By Lemma
4.8 and equation (25),

n′(t) = Pn(t)R [θ(t)] n′(0), N′(t) = PN(t)R [Θ(t)] N′(0),

where θ(t) =
∫ Lt

0
k ds and

Θ(t) =

∫ Lt

0

K ds =

∫ Lt

0

(
k − |a|
|ṅ|

)
ds =

∫ Lt

0

k ds−
∫ t

0

|a|dτ = θ(t)− Φ(t).

13



It follows that

Pn(t)R [Φ(t)] (PN(t))−1N′(t) = Pn(t)R [Φ(t)]R [θ(t)] N′(0) =

= Pn(t)R [Φ(t) + Θ(t)] N′(0) =

= Pn(t)R [θ(t)] n′(0) = n′(t),

as claimed.

6 Example: the Mathieu equation (timelike an-
gular velocity)

In this section we illustrate Theorem 3 for G = SL2(R) with a well-known
example. The Mathieu equation

ẍ+ ω2(1 + ε cos t)x = 0 (26)

can be thought of as a model of small–amplitude oscillations of a pendulum
whose pivot oscillates sinusoidally in the vertical direction. This system arises
in numerous other settings which we will not list here. We can rewrite Mathieu
equation as a system

ẋ = ax, where x =

(
x

ẋ

)
, a =

(
0 1

−ω2(1 + ε cos t) 0

)
∈ sl2(R),

with the fundamental matrix g(t) ∈ SL2(R) defined by ġ = ag, g(0) = I. From
now on we assume that |ε| < 1, so that 〈a, a〉 = −4 det(a) = −4ω2(1 + ε cos t) <
0, and thus a(t) is timelike. Since the diagonal entries of a vanish, a is con-
strained to the plane a1 = 0, and thus the space curve n follows a geodesic
segment on H2 (unless ε = 0, in which case n is a point); in particular, k = 0
for the geodesic curvature of the space curve. From equation (25), we obtain
the expression for the geodesic curvature of the body curve N:

K = − |a|
|ṅ|

= −4ω(1 + ε cos t)3/2

ε| sin t|
.

Thus N(t) has cusps at t = nπ, n ∈ Z, see Figure 6.

We recall briefly that the period map (the monodromy, or Floquet matrix) of
equation (26) is defined by M := g(2π) ∈ SL2(R), where g(t) is the fundamental
solution of the associated linear system, and that it determines completely the
stability properties of equation (26) in the sense that all solutions are bounded
for all time if and only if M is elliptic, or equivalently, if and only if the set of
its matrix powers {Mn|n ∈ Z} is bounded. Note that for |ε| < 1, the infinites-
imal generator a(t) of the flow g(t) of (26), for each t, is elliptic, and yet M ,
thought of as a composition of a non commuting family of infinitesimal elliptic
rotations, may itself fail to be elliptic, leading to unbounded solutions of (26), a
phenomenon known as parametric resonance [1, §25, p. 113]. Figure 8 shows the
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ω = 1/2 ω = 1 ω = 3/2

ω ≈ 1/5 ω ≈ 2/5 ω ≈ 1/3

Figure 6: The Mathieu equation: The space curve n (the horizontal segment)
and the body curve N in the Poincaré disk model of H2, for various choices of
ω and ε. Top row: unstable case (hyperbolic period map); bottom row: stable
case (elliptic period map).

Figure 7: As (ω, ε) crosses the first Arnold tongue of Figure 8 (with fixed ε =
0.55), the curve N changes as shown, starting with the elliptic case (e) on the
left, through hyperbolic (h) and ending elliptic again (e) in the next stability
region.

Figure 8: Arnold’s tongues for the Mathieu equation.
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Figure 9: (a): a piece of the ‘body’ curve N and the space curve n (the horizontal
segment) in the Poincaré disk; (b)-(h): some snapshots of a single ‘loop’ of the body
curve N rolling on the space curve n.

Figure 10: Another elliptic case: N rolls on n.

associated Arnold tongues: the shaded regions in the (ω, ε)–plane, corresponding
to the parameter values for which the period map M is hyperbolic.

Returning to the hyperbolic plane H2, Figure 7 illustrates how stability of
the Mathieu equation is reflected in the body curve N(t): for (ω, ε) in the stable
(unshaded) region of Figure 8, the body curve N is quasi-periodic or periodic, as
must be the case since the set {Mn|n ∈ Z} is bounded. On the other hand, for
all resonant (ω, ε) (the shaded regions of Figure 8) the body curve N extends to
the absolute (the ‘circle at infinity’ in the Poincaré disk model of H2 in Figure
7), reflecting the fact that the powers Mn are unbounded as |n| → ∞.

We also point out that if the period map M is elliptic, conjugate to a rotation
through an angle 2π/n, the body curve N is closed, with 2n cusps, as shown in
the lower row of images in Figure 6.

Figure 6 shows the ‘static’ picture, i.e., the initial position of N at t = 0;
Figures 9 and 10 illustrate the rolling of N on the space curve n.
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7 Example: the bicycle equation (spacelike an-
gular velocity)

In this section we illustrate Theorem 3 for G = SL2(R) with another example,
where the motion of a ‘bicycle’ is represented by rolling of cones in Minkowski
space; the bicycle is described in the caption of Figure 11.

θ
`

F

R

Figure 11: The ‘bicycle’ is represented by a segment RF of fixed length ` whose ‘front
end’ F undergoes a prescribed motion along the ‘front track’, and whose ‘rear end’
R motion is constrained by the ‘no slip’ condition: its velocity is aligned with the
segment RF at all times.

We start by recalling the description the motion of a bicycle by a linear
system of ODEs. The ‘no slip’ condition is easily seen to be equivalent to the
angle θ of the bicycle satisfying

`θ̇ = ẋ sin θ − ẏ cos θ, (27)

where F (t) = (x(t), y(t)) is a parametrized ‘front track’. Equation (27) is equiv-
alent to

d

dt

(
u
v

)
= − 1

2`

(
ẋ ẏ
ẏ −ẋ

)(
u
v

)
; (28)

namely, for any solution of the linear system (28), the angle

θ = 2 arg(u+ iv) (29)

evolves according to equation (27). The proof of this equivalence is a straight-
forward calculation (see [2, Theorem 1]).

The coefficients matrix a(t) of the system (28) satisfies 〈a, a〉 = −4 det(a) =
(ẋ2 + ẏ2)/`2 > 0, so that a is spacelike and n = a/|a| ∈ H1,1. From now
on we assume that the front track F (t) is a closed convex curve of perimeter
L, parametrized by arc length, i.e., |Ḟ |2 = ẋ2 + ẏ2 = 1, so n = −ẋ i − ẏ j is
a parametrization of the equator x3 = 0 of H1,1. In other words, the ‘space
curve’ follows the equator; in particular, the geodesic curvature of n is k = 0.
To calculate the geodesic curvature of the body curve we use formula (25),

obtaining K = −|a|/|ṅ| = −1/(`κ), where κ = |F̈ | =
√
ẍ2 + ÿ2 is the curvature
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(a) (b) (c)

Figure 12: Bicycle monodromy for an elliptical front track (blue): if the bicycle length
` is small enough the monodromy is hyperbolic; (a) and (b) show the two closed back
tracks (red) corresponding to the two fixed point of M` in RP 1. (c): for ` large enough,
the monodromy is elliptic, conjugate to a rotation.

Figure 13: Some snapshots of rolling curves in H1,1, representing bicycling along a
circular front track with elliptic monodromy (` > radius of the front track). The ‘body
curve’ N (the tilted ellipse) has constant curvature |K| > 1, and is rolling along the
stationary ‘space curve’ n (the ‘equator’ of H1,1, a geodesic).

of the front track. That is: the geodesic curvatures of the body curve N(t) ∈ H1,1

and the front wheel track F (t) ∈ R2 are reciprocal, up to a factor.
This surprising reciprocal connection between two curves living in different

spaces – the bike’s front track in R2 and the body curve inH1,1 – was proven here
by computation. It turns out, however, that there is a geometrical explanation
of this reciprocity; we will provide this explanation elsewhere.

We now make some observations on the body curve. Since F (t) is assumed
to be closed, the coefficient matrix of the bicycle system (28) is periodic; the
Floquet matrix M` of this system is referred to as the `-bicycle monodromy of
the front track. The monodromy M` may be elliptic, parabolic or hyperbolic;
as a side remark, in the latter case M` has two real eigendirections, which
correspond to two closed rear wheel tracks, as Figure 12 illustrates; one of these
corresponds to the bike moving backwards.

An example. In the special case when the front track is the unit circle we have
κ = 1, |K| = 1/`, so N is a spacelike constant geodesic curvature curve on H1,1.
Now all curves of constant geodesic curvature on H1,1 are given simply by plane
sections of this hyperboloid (just like in case of the ordinary sphere S2 ⊂ R3).
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(a) (b)

(c) (d)

Figure 14: (a) Bicycling along an elliptical front track (blue), with hyperbolic mon-
odromy (small `). The rear track (red) spiral towards a closed curve, corresponding
to the stable fixed point of the monodromy. (b) The corresponding body curve (blue)
is unbounded, asymptotic to one of the null lines on H1,1. (c) An elliptical front track
with elliptic monodromy. The rear track is quasi-periodic. (d) The corresponding
body curve is contained in a ‘ribbon’ wrapped around H1,1.

In our case, the intersecting plane is tangent to the equator at n(0), Figure 13.
For ` > 1 this plane section is an ellipse with geodesic curvature |K| = 1/` < 1,
as shown in Figure 13, and the bicycle monodromy is elliptic. For ` = 1 the
plane section is a parabola, with |K| = 1 and M` parabolic. Similarly, for ` < 1
the plane section is a hyperbola, one branch of which is the body curve, with
asymptotes a pair of ruling null lines of H1,1, with |K| = 1/` > 1, and the
bicycle monodromy is hyperbolic.

General closed front track. In the general case when κ (the curvature of the
bicycle front track F ) is not constant and the bicycle length ` is small enough, the
bicycle monodromy M` is hyperbolic and the resulting body curve N in H1,1 is
unbounded, asymptotic to one of the ruling null lines, as shown in Figure 14(b).
For ` large enough the bicycle monodromy is elliptic and the corresponding body
curve is bounded quasi-periodic, filling up a ‘ribbon’ wrapped around H1,1, as
illustrated in Figure 14(d).

Returning to the case of a general closed convex front track, the body curve
N on H1,1 is obtained by deforming the equator n by changing its geodesic
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curvature from 0 to 1/(`κ); the resulting deformation “splits” what initially
was the closed curve, with the endpoints and the tangents at the endpoints
related by

Adg(L)N(L) = N(0), Adg(L)Ṅ(L) = Ṅ(0),

as Figure 13 illustrates. It turns out that the split is rather special for large `: the
endpoints separate almost tangentially, as Figure 13 suggests, and the distance
of separation is proportional to the area A enclosed by the front track, to the
leading order, as Figure 13 suggests. Indeed, this follows from the following
observation.

Lemma 7.1. Let A be the area enclosed by the front track F . For large `, the
adjoint action Adg(L) is an elliptic rotation through an angle

`−2A+O(`−3), (30)

around a timelike axis which is O(`−1) – close to the a3 axis in R2,1.

In the special case when the front track is the unit circle, the picture is
particularly simple, Figure 13: the body curve N is an arc of an ellipse lying in
a plane tangent to the equator and of slope `−1 (exactly); and the axis of the
rotation Adg(L) is the line of slope ` (in the Lorenz plane the orthogonal lines
have reciprocal slopes; in other words, the slope of the light line is the geometric
mean of two orthogonal slopes).

Proof Lemma 7.1.

1. As stated before, we assume F (t) to be a closed front track and ` to be large.
According to Prytz’s formula (see [3] or [2, equation (1)]) the bicycle angle
θ governed by (27) changes, after the front wheel traces out the front track,
by

∆θ = `−2A+O(`−3). (31)

In particular, the rotation is near–rigid: the leading order term is independent
on the initial condition θ(0).

2. According to (29), every solution (u, v) of (28) rotates through half as much
as θ does:

∆ arg(u+ iv) =
1

2
∆θ

(31)
=

1

2
`−2A+O(`−3);

and since these angles are independent of the initial condition modulo `−3,
we conclude that g(L) is O(`−3)–close to the Euclidean rotation through
1
2`
−2A. And this in turn implies that Adg(L) is O(`−3)–close to the Eu-

clidean=Minkowski rotation R around the k–axis in the Minkowski space
through twice the angle, namely through

`−2A+O(`−3).
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3. This proximity in turn implies via an implicit function argument that the
the Minkowski rotation axis of Adg(L) (i.e. the eigendirection corresponding
to the eigenvalue 1) is O(`−1)–close to the k–axis. Indeed, consider the maps
induced by the linear maps Adg(L) and R on the unit sphere, and examine
what happens to the fixed point k of R as we perturb R to Adg(L). By an
implicit function argument, the displacement of the fixed point is bounded
by the size of the perturbation (O(`−1)) divided by the distance from R to
identity, which is at least 1

2`
−2A; thus the fixed point is displaced by at most

O(`−3)
1
2A`

−2
= O(`−1).

4. Finally, by the Minkowski orthogonality, the invariant plane of Adg(L) cor-

responding to the eigenvalues ±i
(
`−2A + O(`−3)

)
has the reciprocal slope,

i.e., this plane is O(`−3)–close to the equatorial plane.
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