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Abstract
We consider a curved Sitnikov problem, in which an infinitesimal particle 
moves on a circle under the gravitational influence of two equal masses in 
Keplerian motion within a plane perpendicular to that circle. There are two 
equilibrium points, whose stability we are studying. We show that one of the 
equilibrium points undergoes stability interchanges as the semi-major axis of 
the Keplerian ellipses approaches the diameter of that circle. To derive this 
result, we first formulate and prove a general theorem on stability interchanges, 
and then we apply it to our model. The motivation for our model resides with 
the n-body problem in spaces of constant curvature.

Keywords: stability interchanges, Sitnikov problem, qualitative theory
Mathematics Subject Classification numbers: 34D20, 37C10, 70G40

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. A curved Sitnikov problem

We consider the following curved Sitnikov problem: two bodies of equal masses (primaries) 
move, under mutual gravity, on Keplerian ellipses about their centre of mass. A third, massless 
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particle is confined to a circle passing through the centre of mass of the primaries, denoted by 
P0, and perpendicular to the plane of motion of the primaries; the second intersection point of 
the circle with that plane is denoted by P1. We assume that the massless particle moves under 
the gravitational influence of the primaries without affecting them. The dynamics of the mass-
less particle has two equilibrium points, at P0 and P1. We focus on the local dynamics near 
these two points, more precisely on the dependence of the linear stability of these points on 
the parameters of the problem.

When the Keplerian ellipses are not too large or too small, P0 is a local centre and P1 is a 
hyperbolic fixed point. When we increase the size of the Keplerian ellipses, as the distance 
between P1 and the closest ellipse approaches zero, then P1 undergoes stability interchanges. 
That is, there exists a sequence of open, mutually disjoint intervals of values of the semi-major 
axis of the Keplerian ellipses, such that on each of these intervals the linearised stability of 
P1 is strongly stable, and each complementary interval contains values where the linearised 
stability is not strongly stable, i.e. it is either hyperbolic or parabolic. The length of these 
intervals approaches zero when the semi-major axis of the Keplerian ellipses approaches the 
diameter of the circle on which the massless particle moves. This phenomenon is the main 
focus in this paper.

It is stated in [16] and suggested by numerical evidence [11, 12] that the linearised stability 
of the point P0 also undergoes stability interchanges when the size of the binary is kept fixed 
and the eccentricity of the Keplerian ellipses approaches 1.

Stability interchanges of the type described above are ubiquitous in systems of varying 
parameters; they appear, for example, in the classical Hill’s equation and in the Mathieu equa-
tion [24]. To prove the occurrence of this phenomenon in our curved Sitnikov problem, we 
first formulate a general result on stability interchanges for a general class of simple mechani-
cal systems. More precisely, we consider the motion of two bodies, one massive and one 
massless, which are confined to a pair of curves and move under Newtonian gravity. We let 
the distance between the two curves be controlled by some parameter λ. We assume that the 
position of the infinitesimal particle that achieves the minimum distance between the curves 
is an equilibrium point. We show that, in the case when the minimum distance between the 
two curves approaches zero, corresponding to →λ 0, there exists a sequence of mutually dis-
joint open intervals ( )λ λ− ,n n2 1 2 , whose lengths approach zero as →λ 0, such that whenever 

( )λ λ λ∈ − ,n n2 1 2  the linearised stability of the equilibrium point is strongly stable, and each 
complementary interval contains values of λ where the linearised stability is not strongly sta-
ble. From this result we derive the above-mentioned stability interchange result for the curved 
Sitnikov problem.

The curved Sitnikov problem considered in this paper is an extension of the classi-
cal Sitnikov problem described in section  1.2 (see also e.g. [18]). When the radius of 
the circle approaches infinity, in the limit we obtain the classical Sitnikov problem; the 
infinitesimal mass moves along the line perpendicular to the plane of the primaries and 
passes through the centre of mass. The equilibrium point P1 becomes the point at infinity 
and is of a degenerate hyperbolic type. Thus, stability interchanges of P1 represent a new 
phenomenon that we encounter in the curved Sitnikov problem but not in the classical 
one. Also, in the last case it is well known that for ε = 0 the classical Sitnikov problem 
is integrable. In the case of the curved one, the numerical evidence suggests that it is not 
(see figure 2).

The motivation for considering the curved Sitnikov problem resides in the n-body problem 
in spaces with constant curvature, and with models of planetary motions in binary star sys-
tems, as discussed in section 1.3.

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056
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1.2. Classical Sitnikov problem

We recall here the classical Sitnikov problem. Two bodies (primaries) of equal masses 
= =m m 11 2  move in a plane on Keplerian ellipses of eccentricity ε about their centre of 

mass, and a third, massless particle moves on a line perpendicular to the plane of the primaries 
and passes through their centre of mass. By choosing the plane of the primaries the xy-plane 
and the line on which the massless particle moves the z-axis, the equations of motion of the 
massless particle can be written, in appropriate units, as

( ( ))
= −

+
z

z

z r t
¨

2
,

2 2 3/2 (1)

where r(t) is the distance from the primaries to their centre of mass given by

( ) ( )ε= −r t u t1 cos , (2)

where u(t) is the eccentric anomaly in the Kepler problem. By normalising the time we can 
assume that the period of the primaries is π2 , and

( ) ( ) ( )ε ε= − +r t t O1 cos ,2 (3)

for small ε.
When ε = 0, i.e. the primaries move in a circular orbit and the dynamics of the massless 

particle is described by a one-degree of freedom Hamiltonian and so is integrable. Depending 
on the energy level, one has the following types of solutions: an equilibrium solution, when 
the particle rests at the centre of mass of the primaries; periodic solutions around the centre 
of mass; escape orbits, either parabolic, which reach infinity with zero velocity, or hyperbolic, 
which reach infinity with positive velocity.

When ( )ε∈ 0, 1 , the differential equation  (1) is non-autonomous and the system is non-
integrable. Consider the case ε� 1. The system also has bounded and unbounded orbits, as 
well as unbounded oscillatory orbits and capture orbits (oscillatory orbits are those for which 

→ ( )| | = +∞±∞ z tlim supt  and → ( )| | <+∞±∞ z tlim inft , and capture orbits are those for 
which → ( )| | = +∞−∞ z tlim supt

 and → ( )| | <+∞+∞ z tlim supt ). In his famous paper about 
the final evolutions in the three body problem, Chazy introduced the term oscillatory motions 
[5], although he did not find examples of these, leaving the question of their existence open. 
Sitnikov’s model yielded the first example of oscillatory motions [23]. There are many rel-
evant works on this problem, including [1–3, 6, 9, 10, 17, 18, 22].

The curved Sitnikov problem introduced in section 1.1 is a modification of the classical 
problem when the massless particle moves on a circle rather than a line. Here we regard the 
circle as a very simple restricted model of a space with constant curvature. In section 1.3 we 
introduce and summarise some aspects of this problem.

1.3. The n-body problem in spaces with constant curvature

The n-body problem in spaces with constant curvature is a natural extension of the n-body 
problem in Euclidean space; in either case the gravitational law considered is Newtonian. The 
extension was first proposed independently by the founders of hyperbolic geometry, Nikolai 
Lobachevsky and János Bolyai. It was subsequently studied in the late 19th and early 20th 
centuries by Serret, Killing, Lipschitz, Liebmann, Schering etc. Schrödinger developed a 
quantum mechanical analogue of the Kepler problem on the two-sphere in 1940. Interest in the 
problem was revived by Kozlov, Harin, Borisov, Mamaev, Kilin, Shchepetilov, Vozmischeva 
and others in the 1990s. A more recent surge of interest was stimulated by the works on 

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056



1059

relative equilibria in spaces with constant curvature (both positive and negative) by Diacu, 
Pérez-Chavela, Santoprete and others, starting in the 2010s. See [7] for a history of the prob-
lem and a comprehensive list of references.

A distinctive aspect of the n-body problem on curved spaces is that the lack of (Galilean) 
translational invariance results in the lack of centre-of-mass and linear-momentum integrals. 
Hence, the study of the motion cannot be reduced to a barycentric coordinate system.

As a consequence, the two-body problem on a sphere can no longer be reduced to the 
corresp onding problem of motion in a central potential field, as is the case for the Kepler 
problem in Euclidean space. As it turns out, the two-body problem on the sphere is not inte-
grable [25].

Studying the three-body problem in spaces with curvature is also challenging. Perhaps the 
simplest model is the restricted three-body problem on a circle. This was studied in [8]. First, 
they consider the motion of the two primaries on the circle, which is integrable, collisions can 
be regularised and all orbits can be classified into three different classes (elliptic, hyperbolic, 
parabolic). Then they consider the motion of the massless particle under the gravity of the pri-
maries, when one or both primaries are in a fixed position. They obtain once again a complete 
classification of all the orbits of the massless particle.

In this paper we take the above ideas one step further by considering the curved Sitnikov 
problem, with the massless particle moving on a circle under the gravitational influence of two 
primaries that move on Keplerian ellipses in a plane perpendicular to that circle. In the limit 
case, when the primaries are identified with one point, that is, when the primaries coalesce into 
a single body, the Keplerian ellipses degenerate to a point, and the limit problem coincides 
with the two-body problem on the circle described above.

While the motivation of this work is theoretical, there are possible connections with the 
dynamics of planets in binary star systems. About 20 planets outside of the solar system have 
been confirmed to orbit about binary stars systems; since more than half of the main sequence 
stars have at least one stellar companion, it is expected that a substantial fraction of planets form 
in binary star systems. The orbital dynamics of such planets can vary widely, with some planets 
orbiting one star and some others orbiting both stars. Some chaotic-like planetary orbits have 
also been observed, e.g. planet Kepler-413b orbiting Kepler-413 A and Kepler-413 B in the con-
stellation Cygnus, which displays erratic precession. This planet’s orbit is tilted away from the 
plane of binaries and deviates from Kepler’s laws. It is hypothesised that this tilt may be due to 
the gravitational influence of a third star nearby [13]. Of related interest is the relativistic version 
of the Sitnikov problem [14]. Thus, mathematical models like the one considered in this paper 
could be helpful in understanding possible types of planetary orbits in binary star systems.

To complete this introduction, this paper is organised as follows: in section 2 we go more 
in-depth into the description of the curved Sitnikov problem, studying the limit cases and its 
general properties. In section 3 we present a general result on stability interchanges. In sec-
tion 4 we show that the equilibrium points in the curved Sitnikov problem present stability 
interchanges. Finally, in order to have a self-contained paper, we add an appendix with general 
results (without proofs) from Floquet theory.

2. The curved Sitnikov problem

2.1. Description of the model

We consider two bodies with equal masses (primaries) moving under mutual Newtonian grav-
ity in identical elliptical orbits of eccentricity ε, about their centre of mass. For small values of 
ε, the distance r(t) from either primary to the centre of mass of the binary is given by

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056
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( ) ( )
( ) ( ( ( ))) ( ( )) ( )

ρ ε
ρ ε ε ε ε

= >
= − = − +

ε

O

r t r r t r

t u t t

; ; , 0,

; 1 cos 1 cos ,2 (4)

where u(t) is the eccentric anomaly, which satisfies Kepler’s equation ( )ε π τ− =u u tsin 2 / ,  
where τ π/2  is the mean motion5 of the primaries. The expansion in (4) is convergent for 
ε ε< = 0.6627...c ; see [21].

A massless particle is confined on a circle of radius R passing through the centre of mass 
of the binary and perpendicular to the plane of its motion. We assume that the only force 
acting on the infinitesimal particle is the component along the circle of the resultant of the 
gravitational forces exerted by the primaries. The motion of the primaries takes place in the 
xy-coordinate plane and the circle with radius R is in the yz-coordinate plane (see figure 1).

We place the centre of mass at the point (0, R, 0) in the xyz-coordinate system. The position 
of the primaries is determined by the functions

( ) ( ( ) ( ) )
( ) ( ( ) ( ) )
= +
= − −

ε ε

ε ε

t r t r t R r t r t
t r t r t R r t r t

x
x

; sin , ; cos , 0 ,
; sin , ; cos , 0 .

1

2

Note that t  =  0 corresponds to the passage of the primaries through the pericentre at 
( )ε= ± −y R r 1  and π=t  to the passage of the primaries through the apocentre at 
( )ε= ± +y R r 1 ; both the peri and apocentres lie on the plane of the circle of radius R in the 

y-axis.
The position of the infinitesimal particle is ( ) ( ( ) ( ))=t y t z tx 0, ,  (taking into account the 

restriction of motion for the infinitesimal particle to the circle + =y z R2 2 2). We will derive 
the equations of motion by computing the gravitational forces exerted by the primaries:

( )
∥ ∥ ∥ ∥
( ( ) ( ) )

∥ ∥
( ( ) ( ) )

∥ ∥

= −
−
−

−
−
−

= −
− − −

−

−
− +
−

ε

ε ε

ε ε

y t R r

r t r t y R r t r t z

r t r t y R r t r t z

F
x x
x x

x x
x x

x x

x x

, ; ,

; sin , ; cos ,

; sin , ; cos ,
,

1

1
3

2

2
3

1
3

2
3

 

(5)

where the distance from the particle to each primary is

Figure 1. The curved Sitnikov problem.

5 The mean motion is the time-average angular velocity over an orbit.

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056
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∥ ∥ [ ( ) ( ) ( ( ) )]

∥ ∥ [ ( ) ( ) ( ( ) )]

− = + + − +

− = + − − −

ε ε ε

ε ε ε

r t r R Rr t r t y R r t r t

r t r R Rr t r t y R r t r t

x x

x x

; 2 2 ; cos 2 ; cos ,

; 2 2 ; cos 2 ; cos .

1
2 2 1/2

2
2 2 1/2

We note that when ( )ε+ =r R1 2  the elliptical orbit of the primary with the apocentre at 
y  <  R crosses the circle of radius R, hence collisions between the primary and the infinitesimal 

mass are possible. Therefore, we will restrict to <
ε+

r R2

1
; when ε = 0, this means r  <  2R.

We write (5) in polar coordinates, that is =y R qcos , =z R qsin , and we obtain

( ) ( ( ) ( ) )
∥ ∥

( ( ) ( ) )
∥ ∥

= −
− − −

−

−
− +
−

ε
ε ε

ε ε

q t R r
r t r t R q R r t r t R q

r t r t R q R r t r t R q

F
x x

x x

, ; ,
; sin , cos ; cos , sin

; sin , cos ; cos , sin
.

1
3

2
3

 
(6)

The origin q  =  0 corresponds to the point (0, R, 0) in the xyz-coordinate system. Thus, the 
primaries move in elliptical orbits around this point.

Next we will retain the component along the circle of the resulting force (6). That is, we 
will ignore the constraint force that confines the motion of the particle to the circle, as this 
force acts perpendicularly to the tangential component of the gravitational attraction force. 
The unit tangent vector to the circle of radius R at ( ( ) ( ))R q R q0, cos , sin  pointing in the posi-
tive direction is given by ( ) ( ( ) ( ))= −q q qu 0, sin , cos . The component of the force ( )ε q t R rF , ; ,  
along the circle is computed as

( ) ( ) ( ( ) ( )) ( )
∥ ∥

( ( ) ( )) ( )
∥ ∥

⋅ = −
+

−
−

−
−

ε
ε εq t R r q

R r t r t q R r t r t q
F u

x x x x
, ; ,

; cos sin ; cos sin
.

1
3

2
3

 

(7)

The motion of the particle, as a Hamiltonian system of one-and-a-half degrees of freedom, 
corresponds to

( )
=
= ε

q p
p f q t R r
˙ ,
˙ , ; , , (8)

where

f q t R r q t R r q

r t r R q R r t r t

r t r R q R r t r t

F u

x x

x x

, ; , : , ; , ,

; 2 1 cos ; cos ,

; 2 1 cos ; cos ,

1
2 1/2

2
2 1/2

( ) ( ) ( )

∥ ∥ [ ( ) ( )( ( ) )]

∥ ∥ [ ( ) ( )( ( ) )]

= ⋅

− = + − +

− = + − −

ε ε

ε ε

ε ε

Hence

( ) ( )= +ε εH q p t R r
p

V q t R r, , ; ,
2

, ; , ,
2

 (9)

where the potential is given by

( )
∥ ∥ ∥ ∥

⎛
⎝
⎜

⎞
⎠
⎟= −

−
+

−
εV q t R r

R x x x x
, ; ,

1 1 1
.

1 2
 (10)
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2.2. Limit cases

The curved Sitnikov problem can be viewed as a link between the classical Sitnikov problem 
and the Kepler problem on the circle mentioned in section 1.

2.2.1. The limit →∞R . We express (7) in terms of the arc length w  =  R q, obtaining

( ) ( ( ) ) ( )

[ ( ) ( ( ))( ( ) )]
( ( ) ) ( )

[ ( ) ( ( ))( ( ) )]

= −
+

+ − +

−
−

+ − −

ε
ε

ε ε

ε

ε ε

f w t R r
R r t r t w R

r t r R w R R r t r t

R r t r t w R

r t r R w R R r t r t

, ; ,
; cos sin /

; 2 1 cos / ; cos

; cos sin /

; 2 1 cos / ; cos

2
3
2

2
3
2

 

(11)

which we can write in a suitable form as

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

f w t R r
w t

r t r w t

w t

r t r w t

, ; ,
1 cos

; 2 1 cos

1 cos

; 2 1 cos

.

w R

w R

r t r

R

w R

w R

r t r

R

w R

w R

r t r

R

w R

w R

r t r

R

sin /

/

;

2 2 1 cos /

/

;
3
2

sin /

/

;

2 2 1 cos /

/

;
3
2

2

2

( )
( )

( )
( )

( )

( )

( )

( )
( )

( )

( ( ))
( )

( )

( )
( )

( )

( ( ))
( )

( )

= −
+

+ +

−
−

+ −

ε

ε

ε

−

−

ε

ε

ε

ε

Letting R tend to infinity we obtain

( )
( ( ) )→

= −
+

ε

ε
∞

f w t R r
w

r t r w
lim , ; ,

2

;
,

R 2 2 3/2

which is the classical Sitnikov problem.

2.2.2. The limit →r 0. When we take the limit →r 0 in (7) we are fusing the primaries into a 
large mass at the centre of mass and we obtain a two-body problem on the circle. The comp-
onent force along the circle corresponds to

( ) ( )
( ( ))→

= −
−εf q t R r

q

R q
lim , ; ,

sin

2 1 cos
.

r 0 2 3/2 (12)

This problem was studied in [8] with a different force given by

( )π
− +

−Rq R q

1 1

2
,

2 2 (13)

the distance between the large mass and the particle is measured by the arc length (in that 
paper the authors assumed that R  =  1). The potential of the force (12) is

( )
( ( ))

= −
−

V q
R q

1

2 1 cos
,1 1 2

1
1/2

where q1 denotes the angular coordinate, and the potential for (13) is

( )
( )π

= − −
−

V q
Rq R q

1 1

2
,2 2

2 2
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where q2 denotes the angular coordinate. Each problem defines an autonomous system with 
Hamiltonian

( ) ( )= +H p q p V q,
1

2
,i i i i i i

2 (14)

taking =p q td /d1 1 , =p q td /d2 2  and i  =  1, 2. Let φt
i be the flow of the Hamiltonian Hi, and let 

Ai denote the phase space,  =i 1, 2
Using that all orbits are determined by the energy relations given by (14), it is not difficult 

to define a homeomorphism →g A A: 1 2 which maps orbits of system (12) into orbits of system 
(13). In the same way we can define a homeomorphism →h A A: 2 1, which in fact is g−1. This 
shows the C0 equivalence of the respective flows. One can show that the two corresponding 
flows are C0—equivalent.

We recall from [8] that the solutions of the two-body problem on the circle (apart from 
the equilibrium antipodal to the fixed body) are classified in three families (elliptic, parabolic 
and hyperbolic solutions) according to their energy level. The elliptic solutions come out of 
a collision, stop instantaneously, and reverse their path back to the collision with the fixed 
body. The parabolic solutions come out of a collision and approach the equilibrium as →∞t . 
Hyperbolic motions come out of a collision with the fixed body, traverse the whole circle and 
return to a collision.

We remark that the two limit cases →∞R  and →r 0 are not equivalent. Indeed, in the 
case →r 0 the resulting system is autonomous, the point q  =  0 is a singularity for the system, 
and the point π=q  is a hyperbolic fixed point, while in the case →∞R  the resulting system 
is non-autonomous (for ε≠ 0), the point q  =  0 is a fixed point of elliptic type, and the point 
= ∞q  is a degenerate hyperbolic periodic orbit.

2.3. General properties

2.3.1. Extended phase space, symmetries, and equilibrium points. It is clear that, besides the 
limit cases →∞R  and →r 0, the dynamics of the system depends only on the ratio r/R, so we 
can fix R  =  1 and study the dependence of the global dynamics on r, where 0  <  r  <  2. In this 
case using (8) and (4) we get

( ) ( ( ) ( )) ( )
[ ( ) ( )( ( ) )]

( ( ) ( )) ( )
[ ( ) ( )( ( ) )]

ρ ε

ρ ε ρ ε
ρ ε

ρ ε ρ ε

= −
+

+ − +

−
−

+ − −

εf q t r
r t t q

r t q r t t

r t t q

r t q r t t

, ;
1 ; cos sin

; 2 1 cos 1 ; cos
1 ; cos sin

; 2 1 cos 1 ; cos
.

2 2 3/2

2 2 3/2

 

(15)

To study the non-autonomous system (8) we will make the system autonomous by intro-
ducing the time as an extra dependent variable

⎧
⎨
⎪

⎩⎪
q p s r

q p
p f q s r

s

, , ;
˙
˙ , ;

˙ 1

.( ) ( )X =
=
=
=

ε ε (16)

This vector field is defined on [ ] [ ]π π× ×R0, 2 0, 2 , where we identify the boundary points 
of the closed intervals. The flow of εX  possesses symmetries defined by the functions

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

π
π

= − −
= +
= +
= − −

S
S
S
S

q p s q p s
q p s q p s
q p s q p s
q p s q p s

, , , , ,
, , , , 2 ,
, , 2 , , ,
, , , ,

1

2

3

4

in the sense that

 • ( ( )) ( ( ))=ε εX XS Sq p s q p s, , , ,1 1 ,
 • ( ) ( ( ))=ε εX X Sq p s q p s, , , ,2 ,
 • ( ) ( ( ))=ε εX X Sq p s q p s, , , ,3

 • ( ( )) ( ( ))= −ε εX XS Sq p s q p s, , , ,4 4 ,

as can be verified by a direct computation.
The function S1 describes the symmetry respect to the trajectory (0, 0, s), S2 and S3 describe 

the bi-periodicity of ( )εf q s r, ;  and S4 describes the reversibility of the system.
System (8) has two equilibria (0, 0) and ( )π, 0 , which correspond to periodic orbits for εX .
While the classical Sitnikov equation is autonomous for ε = 0, our equation (16) is not, and 

thus we expect it to be nonintegrable, as is borne out by numerical simulation. Figure 2 shows 
a Poincaré section corresponding to s  =  0 (mod π2 ), with ε = 0 and r  =  1. This simulation 
suggests that the invariant circles given by the Kolmogorov–Arnold–Moser (KAM) theorem 
coexist with chaotic regions.

In the sequel, we will analyse the dynamics around the equilibrium points ( )π, 0  and (0, 0).  
One important phenomenon that we will observe is that both equilibrium points undergo  
stability interchanges as the parameters are varied. More precisely, when ε sufficiently small 

is kept fixed and →
ε+

r R2

1
, the point ( )π, 0  undergoes infinitely many changes in stability, and 

when r is kept fixed and →ε 1, the point (0, 0) undergoes infinitely many changes in stability.
In the next section we will first prove a general result.

3. A general result on stability interchanges

In this section we switch to a more general mechanical model which exhibits stability inter-
changes. We consider the motion under mutual gravity of an infinitesimal particle and a heavy 
mass each constrained to its own curve and moving under gravitational attraction, and study 
the linear stability of the equilibrium point corresponding to the closest position between the 

Figure 2. Poincaré section for the curved Sitnikov problem, for ε = 0 and r  =  1.
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particles along the curves they are moving on. In section 4, we will apply this general result to 
the equilibrium point P1 of the curved Sitnikov problem described in section 1.1. The fact that in 
the curved Sitnikov problem there are two heavy masses, rather than a single one as considered 
in this section, does not change the validity of the stability interchanges result, since, as we shall 
see, what ultimately matters is the time-periodic gravitational potential acting on the infinitesi-
mal particle.

To describe the setting of this section, consider a particle constrained to a curve ( )λ= sx x ,  
in R3, where s is the arc length along the curve and λ is a parameter with values in some 
interval [ ]λ0, 0 , λ > 00 . Another (much larger) gravitational mass undergoes a prescribed peri-
odic motion according to ( ) ( )λ λ= = +t ty y y, 1, ; see figure 3. We assume that the mass of 
the particle at ( )sx  is negligible compared to the mass at ( )ty , treating the particle at ( )sx  as 
massless.

To write the equation of motion for the unknown coordinate s of the massless particle, let:

( ) ( ) ( )λ λ λ= −s t s tz x y, , , , . (17)

Assume that  = =s t0, 0 minimise the distance between the two curves:

( ) ( ) ( )λ λ δ λ| | = | | =s tz z0, 0, min , , ,
s t,

def
 (18)

for all [ ]λ λ∈ 0, 0 , and that this minimum point is non-degenerate with respect to t, in the sense 
that

( ) ∣λ
∂
∂
| | ≠=t
z t0, , 0.t

2

2 0 (19)

Moreover, we make the following orthogonality assumption:

x y˙ 0, ˙ 0, 0,  for all  0, .0( ) ( ) [ ]λ λ λ λ⋅ = ∈ (20)

In the sequel we will study the case when the minimum distance ( ) →λ| |s tzmin , , 0s t, , that 
is, the shortest distance from the orbit ( )λty ,  of the massive body to the curve ( )λsx ,  drawn by 

Figure 3. An infinitesimal particle with coordinates ( )sx  is constrained to a curve and 
moves under the influence of the larger mass with coordinates ( )ty .
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the infinitesimal mass approaches 0 as →λ λ0. See figure 3. In the curved Sitnikov problem, 

this corresponds to the case when →
ε+

r R2

1
 ( →r R2  when ε = 0).

To write the equation of motion for s, we note that the Newtonian gravitational potential of 
the particle at ( )sx  is a function of s and t given by

( ) ( )λ λ= −| |−U s t s tz, , , , ,1 (21)

and the evolution of s is governed by the Euler–Lagrange equation  − =L L 0
t s s

d

d ˙  with the 

Lagrangian

( )λ= −L s U s t
1

2
˙ , , ,2

leading to6

( )  λ+ = =
∂
∂

′ ′s U s t
s

¨ , , 0, where . (22)

Note that s  =  0 is an equilibrium for any λ, since ( )λ =′U t0, , 0 for all t and for all λ, 
according to (18). Linearising (22) around the equilibrium s  =  0 we obtain

( )    ( ) ( )λ λ λ+ = + =S a t S a t a t¨ , 0, 1, , , (23)

where ( ) ( )″λ λ=a t U t, 0, , .
We have the following general result:

Theorem 1. Assume that (18)–(20) hold, that x and y are both bounded in the C2–norm 
uniformly in λ , and

∥ ( ) ( )∥ →     →λ λ λ−x s y tmin , , 0 as 0.
s t, (24)

Then there exists an infinite sequence

⩾ ⩾ ⩾ →λ λ λ λ λ λ> > > >−� � 0n n1 2 3 4 2 1 2 (25)

such that the equilibrium solution s  =  0 of (22) is linearly strongly stable7 for all  ( )λ λ λ∈ −,n n2 2 1 . 
Furthermore, each complementary λ–interval contains points where the linearised equilib
rium is not strongly stable, i.e. is either hyperbolic or parabolic.

The proof of theorem 1 relies on lemmas 2–4 stated below.

Lemma 2. Consider the linear system

( )λ+ =x a t x¨ , 0, (26)

where ( )λa t,  is a continuous function of [ ]∈t 0, 1  , 0,( ¯ ]λ λ∈  , where 0λ̄> . Let 
( )λ = +z t x x, i ˙, where ( )λ=x x t,  is a nontrivial solution of (26). Assume that there exists an 

interval [ ( ) ( )] [ ]⊂λ λt t, 0, 10 1  , possibly depending on λ, such that

6 To explain this form of the Lagrangian, we note that the equations for our massless particle are obtained by 
taking the limit of the particle of small mass m; for such a particle, in the ambient potential U, the Lagrangian is 

ms mU s t˙ , ,1

2
2 ( )λ− —the factor m in front of U is due to the fact that U is the potential energy of the unit mass.  

Dividing the Euler–Lagrange equation by m gives (22).
7 The equilibrium solution is linearly strongly stable if the Floquet multipliers of (23) lie on the unit circle and are 

not real, or equivalently, if the linearised system lies in the interior of the set of stable systems

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056



1067

( ) →λ −∞
λ↓

z tlim arg , .
t

t

0
0

1

 (27)

Here ( )λz targ ,  is defined as a continuous function of t. Although this choice of arg is unique 
only modulo π2 , its increment, as stated in equation (27) is uniquely defined.

Then there exists a sequence { }λ =
∞

k k 0 satisfying (25) such that the Floquet matrix of (23) 
is strongly stable for all ( )λ λ λ∈ −,n n2 2 1 , for any n  >  0 . Furthermore, every complementary 
λ–interval contains values of λ for which the Floquet matrix is not strongly stable.

Proof of this lemma can be found in [15].

Lemma 3. Consider the linear system

( )+ =x a t x¨ 0, (28)

and assume that a(t)  >  0 on some interval [ ]t t,0 1 . For any (nontrivial) solution x(t) the corresp
onding phase vector ( ) = +z t x xi ˙ rotates by

z z t a t t targ min .
t

t

t t

def

,
1 0

0

1

0 1

[ ] ( ) ⩽ ( ) ( )
[ ]

θ π= − − + (29)

Proof. Writing the differential equation  ( )+ =x a t x¨ 0 as a system   ( )= = −x y y a t x˙ , ˙ , we 
obtain (using complex notation):

( ) ( ) ( )( ) ( )θ θ θ= + = − = − = −
− −
+

= − +
t

x y
t

z
z

z

y ax x y

x y
a˙ d

d
arg i

d

d
Im ln Im

˙
Im

i i
cos sin .

2 2
2 2

We conclude that for any solution of (28), the angle ( )θ = +x yarg i  satisfies

a t t t a a t˙ cos sin , for , , where min .m m
t t

2 2
0 1

,0 1

⩽ ( )       [ ]       ( )
[ ]

θ θ θ− + ∈ =

To invoke comparison estimates, consider ¯( )θ t , which satisfies

¯ ( ¯ ¯)    ¯( ) ( )θ θ θ θ θ= − + =
t

a t t
d

d
cos sin , .m

2 2
0 0 (30)

By the comparison estimate, we conclude:

⩽ ¯θ θ ,
t
t

t

t

0

1

0

1

 (31)

and the proof of the Lemma will be complete once we show that θ̄ satisfies the estimate (29). 
To that end we consider a solution of

¯ ¯+ =x a x¨ 0m

with the initial condition satisfying

( ¯( ) ¯( )) ¯( )θ+ =x t x t targ i ˙ .0 0 0 (32)
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This solution is of the form

¯( ) ( )   ϕ= − =x t A a t Acos , const.,m

where ϕ is chosen so as to satisfy (32).
Since ( ¯ ¯)+x xarg i ˙  satisfies the same differential equation as θ̄, and since the initial condi-

tions match, we conclude that ¯( ) ( ¯ ¯)θ = +t x xarg i ˙ , so that

¯( ) ( ( ) ( )) ( )θ ϕ ϕ ϕ π= − − − = − − + ̂t a t a a t a targ cos i sin /2,m m m m

 

(33)

where �X  denotes a quantity whose absolute value does not exceed X. In other words, ¯( )θ t  
is given by a linear function with coefficient − am , up to an error π< /2. The last ine-

quality is due to the fact that the complex numbers ( ) ( )φ φ− − −a t a tcos i sinm m  and 

( ) ( )φ φ− − −a t a t a tcos i sinm m m  lie in the same quadrant, so the difference between 

their arguments is no more than π /2.
Therefore, over the interval [ ]t t,0 1  the function θ̄ changes by the amount ( )−a t tm 1 0  with 

the error of at most π+ =π π
2 2

:

a t t ;
t

t
m 1 0

0

1¯ ⩽ ( )θ π− − + (34)

restating this more formally, (33) implies

¯( ) ( )     ¯( ) ( )θ ϕ
π
θ ϕ

π
<− − + >− − −t a t t a t

2
,

2
.m m1 1 0 0

Subtracting the second inequality from the first gives (33).

Substituting (34) into (31) yields (29) and completes the proof of lemma 3. ◊

Lemma 4. Consider the potential U defined by equation  (21). Assume that the functions 
( )λ= sx x , , ( )λ= ty y ,  satisfy

 (i)  the minimum zmin , ,s t, ( ) ( )λ δ λ| ⋅ ⋅ | =  is nondegenerate and is achieved at s  =  t  =  0, where 
( ) ( ) ( )λ λ λ= −s t s tz x y, , , , ,

 (ii) ∥ ( )∥ ⩽λ⋅ ⋅ Mz , , C2  uniformly in λ λ< <0 0, and
 (iii) ( ) →δ λ 0 as →λ 0.

Then there exists time ( )τ τ λ=  (approaching zero as →λ 0) such that

( ) ( ) →
→ ⩽ ( )

⎛
⎝
⎜

⎞
⎠
⎟″τ λ λ⋅ ∞

λ τ λ| |
U tlim min 0, , .

t0
 (35)

Proof. Differentiating (21) with respect to s twice, we get

( ) ( )( ) ( )
( ) ∣

⎡
⎣⎢

⎤
⎦⎥

″
″λ =

⋅ + ⋅ ⋅ − ⋅
⋅

′ ′ ′

=

U t
z z z z z z z z

z z
0, ,

3
.

s

2

5/2
0

 (36)

We now estimate all the dot products in the above expression to obtain a lower bound.
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First,

⋅ =′ ′z z 1, (37)

since s is the arc length, and from here ″⋅ =′z z 0. Now, to estimate ⋅z z and ⋅ ′z z  we observe 

that ( )⋅ = ⋅′ ′z z z z1

2
 and we note that the first expression, as a function of t with s  =  0 fixed 

has a minimum at t  =  0 that we call δ2, and that the second function vanishes at t  =  0 . Apply-
ing Taylor’s formula with respect to t we then have

̂ ̂( )    ′δ⋅ = + ⋅ = ⋅ =′kt ktz z z z z z,
1

2
,2 2 (38)

where the constant k is determined by the C2–norm M of z. For the remaining dot product we 
have (still keeping s  =  0 and t arbitrary):

⩽ ⩽
( )

″ ″ δ| ⋅ | | || | +M ktz z z z .
38

2 2 (39)

Using the above estimates in (36), we obtain

( ) ⩾
( )

( )
″ λ

δ δ

δ

− + −

+
U t

M kt k t

kt
0, ,

1 3
.

2 2 2 2 2

2 2 5/2
 (40)

Now we restrict t to have ⩽δ δ+ kt 22 2 2; this guarantees that the denominator in (40) does 
not exceed ( )δ2 5/2; to bound the numerator, we further restrict t so that the dominant part 

⩾δ δ− k t32 2 2 1

2
2, thus bounding the numerator from below by

( ) ⩾δ δ δ δ δ δ− − − >k t M M3 2
1

2
2

1

4
2 2 2 2 2 2 3 2

if δ is sufficiently small. In summary, we restricted t to

⩽ ( )       ( ( ) )δ τ λ| | = = − −
t c c k k, where min , 6 ,def 1/2 1
 (41)

and showed that for all such t and for δ small enough

( ) ⩾
( )

″ λ
δ

δ δ
=U t

c
0, ,

2
,

1

4
2

2 5/2
1
3

 (42)

where = −c 21
9/2. With τ defined in (41) we obtain a tlim min ,t0 ( ( ) )→ ⩽τ λ⋅ = ∞τ τ| | , thus 

completing the proof of the Lemma. ◊

Proof of theorem 1. Consider the linearised equation

( )″ λ+ =x U t x¨ 0, , 0, (43)

and consider the phase point = +z x xi ˙ of a nontrivial solution. Lemma 3 gives us the rotation 
estimate (29) for any time interval [ ]t t,0 1 ; let this interval be [ ( ) ( )]τ λ τ λ− ,  where ( )τ λ  is taken 
from the statement of lemma 4. We then have from (29): (29)
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z z t U targ 2 min 0, , .
t

t

t

def

0

1[ ] ( ) ⩽ ( ) ( )
⩽ ( )

″θ τ λ λ π= − ⋅ +
τ λ| |

 (44)

According to the conclusion (35) of lemma 4, →θ −∞ as →λ 0. This satisfies the condition 
(27) lemma 2, which now applies, and its conclusion complies with the proof of theorem 1. ◊

4. Stability of the equilibrium points in the curved Sitnikov problem

The system (8) has two equilibria (0, 0) and ( )π, 0 , which correspond to periodic orbits for εX . 
The associated linear system around the fixed point ( )∗ ∗q p,  can be written as

( )( )= =A t
x
yv v v˙ , , (45)

with

( ) = ∂
∂
ε

= ∗

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

A t f

q

0 1

0 .

q q

Let X(t) be a fundamental matrix solution of system (45) given by

( )
( ) ( )
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟=X t

x t x t
y t y t

,1 2

1 2

with the initial condition X(0)  =  I, the identity matrix; x1 is an even function and x2 and odd 
one since ∂ ∂εf q/  is an even function with respect to t. The monodromy matrix is given by 

( )πX 2  and we denote λ λ,1 2 its eigenvalues, the Floquet multipliers associated with (45). These 
are given by

( ) ( ) ( ( ) ( ))
λ λ

π π π π
=

+ ± + −x y x y
,

2 2 2 2 4

2
,1 2

1 2 1 2
2

 (46)

the trace ( ( )) ( ) ( )π π π= +X x yTr 2 2 21 2  determines the linearised dynamics around the fixed 
point. Moreover, since the function ( )∣∂ ∂ε = ∗f q/ q q  is an even function, we know ( ) ( )π π=x y2 21 2  
(see [24]) and then

( ) ( ( ))λ λ π π= ± −y y, 2 2 1 .1 2 2 2
2 (47)

To emphasise the dependence on the parameters ε r,  we write

( ) ( )π ε π=y r y2 ; , 2 .2 2 (48)

Thus, the linear stability of the equilibrium is

 1. Elliptic type: ( )π ε| | <y r2 ; , 12 .
 2. Parabolic type: ( )π ε| | =y r2 ; , 12 .
 3. Hyperbolic type: y r2 ; , 12( )π ε| | > .

Since the Wronskian is equal to 1 for all t, then
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W r y r x r y r, 2 ; , 2 ; , 2 ; , 1,2
2

2 1( ) ( ( )) ( ) ( )ε π ε π ε π ε= − =

and we have:

y r x r y r2 ; , 1 2 ; , 2 ; , .2
2

2 1( ( )) ( ) ( )π ε π ε π ε= +
 (49)

From this last expression it follows that, in the parabolic case, the periodic orbit corresponding 
to the equilibrium point ( )π, 0  is associated with x1(t) or with x2(t) (or with both).

4.1. Stability of the equilibrium point ( )π, 0 . Case ε = 0.

In this section we consider the system (8)–(15) for the case ε = 0, namely when the primaries 
are following circular trajectories. We also fix R  =  1. The extended vector field under study is

( ) ( )X γ =
=
=
=

⎧
⎨
⎪

⎩⎪
q p t

q p
p f q t r

t

, , ;
˙
˙ , ;
˙ 1

0 0 (50)

where

( ) ( ( )) ( )
∥ ∥

( ( )) ( )
∥ ∥

= −
+

−
−

−
−

f q t r
r t q r t q

x x x x
, ; :

1 cos sin 1 cos sin
,0

1
3

2
3 (51)

∥ ∥ [ ( ) ( ) ( ( ) ( ))]
∥ ∥ [ ( ) ( ) ( ( ) ( ))]
− = + + − −

− = + − − +

r r t q r q t

r r t q r q t

x x

x x

2 2 cos 2 cos 2 cos cos ,

2 2 cos 2 cos 2 cos cos ,

1
2 1/2

2
2 1/2

with 0  <  r  <  2. We observe that in this case, function (51) is π–periodic (remember that 
( )εf q t r, ;  is π2 –periodic if ε> 0).
The linear system associated with (50) around the fixed point ( )π, 0  is defined by the 

function

( ) ( ( ))
[ ( )]

( ( ))
[ ( )]

π
∂
∂

=
+

+ +
+

−

+ −

f

q
t r

r t

r r t

r t

r r t
, ;

1 cos

4 4 cos

1 cos

4 4 cos
,0

2 3/2 2 3/2 (52)

which is C1 with respect to t and r.

Figure 4. Plots for ¯∂ ∂f q/0  varying r from 0 to 2.

Luis Franco-Pérez et alNonlinearity 29 (2016) 1056



1072

Lemma 5. The function ( )π∂
∂

t r, ;
f

q
0  is monotone decreasing with respect to r, that is, for all 

[ )π∈t 0,

( ) ( )π π
∂
∂

>
∂
∂

f

q
t r

f

q
t r, ; , ;0

1
0

2

if <r r1 2 (see figure 4).

Proof. Let ( ) ( )π= ∂
∂

F t r t r, , ;
f

q
0 , then by straightforward computation we get

( ) ( ( ))[ ( ) ] ( ( ))[ ( )]
[ ( )]

( ( ))[ ( ) ] ( ( ))[ ( )]
[ ( )]

⩽ ( )
{[ ( )] [ ( )] }

∂
∂

=
+ + − + +

+ +

+
− − + − − −

+ −
− −

+ + + −
<

F

r
t r

t r r t r t r t

r r t

t r r t r t r t

r r t

r t r

r r t r r t

,
cos 4 cos 4 3 1 cos 2 cos

4 4 cos

cos 4 cos 4 3 1 cos 2 cos

4 4 cos

4 cos 6

min 4 4 cos , 4 4 cos
0.

2

2 5/2

2

2 5/2

2

2 5/2 2 5/2

 ◊

Proposition 6. The equilibrium point ( )π, 0  is of hyperbolic type if  r 17 3 1.059
1/2⩽ ( )− = … .

Proof. We first show that ( ) ⩾F t r, 0 for all t if and only if ⩽ ( )−r 17 3
1/2. We compute

⎡
⎣⎢

⎤
⎦⎥

F

t
t r r t

r r t r r t

r t

r r t

r t

r r t

, sin
1

4 cos 4

1

4 cos 4

6 1 cos

4 cos 4

6 1 cos

4 cos 4
.

2 1/2 2 1/2

2 5/2 2 5/2

( )
( ) ( )

( )
( )

( )
( )

∂
∂

= −
+ +

+
− +

+
+

+ +
−

−
− +

 

(53)

We have ( ) ( )π= −F t r F t r, ,  so it is enough to restrict [ ]∈ πt 0,
2

. Note that ( ) =∂
∂

t r, 0F

t
 for 

π=t 0, /2.
For 0  <  r  <  2, we have

( )
⎜ ⎟
⎛
⎝

⎞
⎠

π
=

+
>F r

r2
,

2

4
0,

2 3/2

and

( )
( ) ( )

( )
( )

=
+
+

+
−
−

=
− + −

−
F r

r

r

r

r

r r

r
0,

1

2

1

2

2 6 8

4
.

3 3

4 2

2 3

It follows immediately that F(0, r)  <  0 if ( )> −r 17 3
1/2

. If ⩽r tcos 1 then (52) im-

plies ( ) ⩾F t r, 0. Hence, ( ) ⩾F t r, 0 for all t provided ⩽r 1. Let ⩽ ( )< −r1 17 3
1/2

. If 

[ ( )]∈ −t r0, cos 1/1 , which is equivalent to >r tcos 1, then
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( ) ( )
⩾

( )
( )

( )
( )

⩾

− +
−

+ +
+

+ +
−

−
− +

r r t r r t
r t

r r t

r t

r r t

1

4 cos 4

1

4 cos 4
0,

6 1 cos

4 cos 4

6 1 cos

4 cos 4
0.

2 1/2 2 1/2

2 5/2 2 5/2

Therefore, (53) implies that F(t, r) is increasing in t for [ ( )]∈ −t r0, cos 1/1  , and, since 
( ) ⩾F r0, 0, it follows that ( ) ⩾F t r, 0 for all t.

Now, let ( ) ( ) ( )= +x t x t x t1 2  be a particular solution of system (45); by hypothesis it satis-
fies ( ) ( )= =x x0 1, ˙ 0 1. From (45) with ε = 0 we obtain

( ) ( )π=
∂
∂

− =x
f

q
t r x x F t r x¨ , ; or ¨ , 0.0

Then, since ( ) ⩽F t r, 0 for all t, we can apply directly Lyapunov’s instability criterion (see, 
for instance, page 60 in [4]) to show that ( )π, 0  is of hyperbolic type. ◊

We can in fact estimate the first value r1 of r at which the equilibrium point ( )π, 0  
becomes of parabolic type for the first time. The idea is to extend slightly the result beyond 

r 17 3
1/2( )= − , and then find the maximum of the r for which proposition 6 holds. On 

the way we have to do straightforward analytic but tedious computations that we decide to 
avoid in this paper. Finally we get that the value of r to have the first parabolic solution is 
≈ �r 1.24721 .
In figure 5 we show a couple of numerical simulations which illustrate the stability inter-

changes of the equilibrium point ( )π, 0  for ( )∈r 0, 2  and ε = 0. The figure on the right-hand 
side is a plot for r close to two.

4.2. Stability of the equilibrium point ( )π, 0 . Case ε≠ 0.

In this case, for every ( )< < −r0 17 3
1/2

, ( )π∂ ∂ >f q t r/ , ; 00 , hence ( )π∂ ∂ >εf q t r/ , ; 0 for 

all ε> 0 sufficiently small (depending on r). Therefore, ( )π, 0  remains an equilibrium point 
of hyperbolic type in the case when the primaries move on Keplerian ellipses of sufficiently 
small eccentricity ε> 0.

We remark that theorem 1 does not depend on the shape of the curves where ( )xx  or ( )ty  are 
moving, in other words we can apply theorem 1 independently if the primaries are moving on 

Figure 5. Graphs of ( )π εy r; ,2 . The plot on the right is a magnification of the one on 
the left for r close to two.
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a circle or on ellipses of eccentricity ε> 0. Thus, we obtain the following result on stability 
interchanges:

Theorem 7. In the curved Sitnikov problem, let us fix any [ )ε∈ 0, 1  , let R  =  1, and consider 
r (the semimajor axes of the Keplerian ellipses traced out by the primaries) as the parameter. 

As r approaches 
ε+

2

1
, the distance between a Keplerian ellipse and the circle of the massless 

particle approaches zero. There exists a sequence ↑
ε+

rn
2

1
 satisfying

⩽ ⩽ ⩽< < <+� �r r r r r r ,n n0 1 2 3 2 2 1 (54)

such that the equilibrium point ( )π, 0  of equation (45) is strongly stable for ( )∈ −r r r,n n2 1 2  and 
not strongly stable for some r in the complementary intervals ( )+r r,n n2 2 1 . In other words, the 
equilibrium point ( )π, 0  loses and then regains its strong stability infinitely many times as r 

increases towards 
ε+

2

1
.

Proof of theorem 7. We verify that theorem 1 applies. The curve ( )λsx ,  of theorem 1 is 
represented by the circle of radius R  =  1, the curve ( )λty ,  is represented by the orbit of the 
primary which gets closer to ( )π, 0  (when ε = 0 the primaries are co-orbital), and the para-
meter λ corresponds to r. The planes of the two curves are perpendicular, as in (20), and the 
minimum distance between the curves, given by (18), is nondegenerate as in (19), and it cor-
responds to the infinitesimal mass being at y  =  −1 and the closest primary to this point being 
at ( )ε= − +y r1 1 . Thus, the minimum distance is ( ) ( )δ ε= − +r r2 1 , and it approaches 

0 when →
ε+

r 2

1
. To apply theorem 1 we only need to verify that x and y are bounded in the  

C2-norm uniformly in r. This is obviously true for ( )t ry ,  since the motion of the primary is not 
affected by the motion of the infinitesimal mass; it is also true for ( )s rx ,  since s  =  arclength 
and the motion lies on the circle of radius R  =  1, hence s rx , 1∥ ( )∥=  (the radius of the circle), 

s rx , 1∥ ( )∥=′  (the unit speed of a curve parametrised by arclength), and ∥ ( )∥″ =s rx , 1 (the 
curvature of the circle). Hence, the conclusion of theorem 1 follows immediately. ◊

4.3. Stability of the equilibrium point q  =  (0, 0).

The linear stability of (0, 0) is the same as of the barycentre in the classical Sitnikov problem, 
since

( )
( )ρ ε

∂
∂

= −εf

q

R

r t
0

2

;
.

3 3

The stability of this point can be treated very similarly to that of the origin for Hill’s equation, 
so in this analysis we use results from that theory.

As in the study of the other equilibrium point we start with the case ε = 0. . Here the func-
tion f0(q, t; r) defined in equation (8) around q  =  (0, 0) is given by

( ) ( ( )) ( )
∂
∂

= − +
+ +

+O
f

q
q

r
q

r r t

r
q q

2 9 9 cos

3
.0

3

2 2 2

5
3 5 (55)

The local dynamics is determined by the linear part. The eigenvalues are on the unit circle, 

given by σ =± i r2/1,2
3, and the Floquet multipliers, which come from the monodromy 

matrix
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( ) ( )
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⎝
⎜⎜

⎞

⎠
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⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠

⎟
⎟
⎟
⎟
⎟

π

π π

π π π

=

−

=X
r

r

r

r r r

X I

cos
2

2
sin

2

2
sin

2
cos

2
, 0 ,

3

3

3

3 3 3

are λ = π±e r
1,2

i 2/ 3
.

Hence, q  =  (0, 0) is of elliptic type if ≠r k2/ 3  for any ∈Zk , and it is of parabolic type 
if =r k2/ 3  for some ∈Zk . In fact, in the parabolic case, if =r m2/ 23 , ∈Zm , then there 
exists a π-periodic solution, and if = +r m2/ 2 13 , ∈Zm , then there exists a π2 -periodic 
solution.

Proposition 8. The equilibium point q  =  (0, 0) of the system defined by (55) is stable for all 
( )∈r 0, 2 .

Proof. The linear part possesses Floquet multipliers which place the system in either the 
elliptic or the parabolic case. In the last case, when =r k2/ 3  for some ∈Zk , there exist two 
independent eigenvectors associated with the eigenvalues λ1,2. Then the conjugacy of A and 
±I implies that the monodromy matrix is = ±A I and q  =  (0, 0) is stable (see [20] for more 
detail).

When the origin is of the elliptic type for the linear system, we observe that the coefficient 
of the term of order 3 in equation (55) is greater than zero for all ( )∈r 0, 2 , then we can ap-
ply directly Ortega’s theorem (see the Appendix and [19]), and therefore we obtain that the 
equilibrium point (0, 0) is stable for the whole system, that is, including the nonlinear part. ◊

We note that, in the case when ε = 0, stability interchanges in a weak sense appear as 
→r 0, since (0, 0) switches between elliptic type when ( )≠r k2/ 2 1/3 and parabolic type when 

( )=r k2/ 2 1/3, ∈ +Zk , as noted previously.
In the case when ε≠ 0, as we mentioned earlier, the linear stability of (0, 0) is the same 

as in the classical Sitnikov problem, so it only depends on the eccentricity parameter ε. The 
papers [11, 12, 16] state that there are stability interchanges when the size r of the binary is 
kept fixed and the eccentricity ε of the Keplerian ellipses approaches 1. We should point out 
that theorem 1 does not apply to this case since the function ( )εr t r,  describing the motion of 
the primaries, corresponding to ( )λy t,  in theorem 1, does not remain bounded in the C2 norm 
uniformly in ε.
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Appendix. Floquet theory

In order to have a self-contained paper we add this Appendix with the main results on Floquet 
theory, most of them are very well known for people in the field.

Consider the linear system

( )= ∈RA tx x x˙ , ,2 (A.1)

where A(t) is a T-periodic matrix-valued function. Let X(t) be the fundamental matrix solution

( )
( ) ( )
( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟=X t

x t x t
y t y t

1 2

1 2
 (A.2)

with the initial condition X(0)  =  I, the identity matrix. Let λ1 and λ2 be the eigenvalues (Floquet 
multipliers) of the monodromy matrix matrix X(T ) and let µ µ,1 2 (Floquet exponents) be such 
that λ λ= =µ µe , eT T

1 21 2 .

Theorem 9 (Floquet’s theorem). Suppose X(t) is a fundamental matrix solution for (A.1), 
then

( ) ( ) ( )+ =X t T X t X T

for all ∈Rt . Also, there exists a constant matrix B such that ( )= X TeTB  and a T-periodic 
matrix P(t), so that, for all t,

( ) ( )=X t P t e .Bt

Lemma 10. Let be λ a Floquet multiplier for (A.1) and λ = µe T, then there exists a non
trivial solution ( ) ( )= µx t p te t , with p(t) a Tperiodic function. Moreover, ( ) ( )λ+ =x t T x t .

Thus, the Floquet multipliers lead to the following characterisation:

 • If ⇔ ( )λ µ| | < <1 Re 0 then ( ) →x t 0 as →∞t .
 • If ( )λ µ| | = ⇔ =1 Re 0 then x(t) is a pseudo-periodic, bounded solution. In particular 

when λ = 1 then x(t) is T-periodic and when λ = −1 then x(t) is 2T-periodic.
 • If λ| | > 1 then ( )µ >Re 0 and therefore ( ) →∞x t  as →∞t , an unbounded solution.

Lemma 11. If the Floquet multipliers satisfy λ λ≠1 2, then the equation (A.1) has two lin
early independent solutions

( ) ( ) ( ) ( )= =µ µx t p t x t p te , e ,t t
1 1 2 2

1 2

where p1(t) and p2(t) are Tperiodic functions and µ1 and µ2 are the respective Floquet expo
nents.

In this way, the stability of the solution to (A.1) is

 • Asymptotically stable if λ| | < 1i  for i  =  1, 2.
 • Lyapunov stable if ⩽λ| | 1i  for i  =  1, 2, or if 1iλ| | =  and the algebraic multiplicity equals 

the geometric multiplicity.
 • Unstable if λ| | > 1i  for at least one i, or if 1iλ| | =  and the algebraic multiplicity is greater 

than the geometric multiplicity.
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A particular case for the equation (A.1) is the so-called Hill’s equation, namely the periodic 
linear second order differential equation:

( )+ =z f t z¨ 0, (A.3)

where f(t) is a π-periodic function. Equation (A.3), as a first-order system, is

( )( ) ( ) ( )
⎜ ⎟
⎛
⎝

⎞
⎠= = = −A t

x
y A t

f t
v v v˙ , ,

0 1
0

. (A.4)

Let (A.2) be a fundamental matrix solution of (A.4). The monodromy matrix corresponds to 
( )πX  and, as before, let λ1 and λ2 be the Floquet multipliers associated with (A.4) and µ1 and 
µ2 be the corresponding Floquet exponents.

In this paper we assume that f(t) is an even function; from Floquet theory we know that x1 
is an even function and x2 is an odd function. Also, the trace of A(t) vanishes and

( ( ))∫λ λ = =
π

e 1.A t t
1 2

tr d
0

Assuming µ = +a bi1  is the Floquet exponent corresponding to the Floquet multiplier λ1, the 
general solution to (A.4) is characterised as follows:

 • Elliptic type: λ ∈C R\1 , with λ| | = 11  (and ¯λ λ=2 1). The general solution is pseudo-
periodic and can be written as

( ) ( ( ) ) ( ( ) )= +π πt c t c tv p pRe e Im e .bt bt
1

i /
2

i /

  The origin is Lyapunov stable.
 • Parabolic type: λ λ= = ±11 2 .

 – If λ = 11  and there are two linearly independent eigenvectors of the monodromy matrix, 
the general solution is

( ) ( ) ( )= +t c t c tv p p ,1 1 2 2

  and is π-periodic and Lyapunov stable.
 – If λ = 11  and there is just one eigenvector associated with this eigenvalue, thus the 

general solution is

( ) ( ) ( ) ( )= + +t c c t t c tv p p ,1 2 1 2 2

  and is unstable.
 – If λ = −12  and there are two linearly independent eigenvectors of the monodromy 

matrix, the general solution is

( ) ( ) ( )= +t c t c tv p pe e ,t t
1 1

i
2 2

i

  and is π2 -periodic and Lyapunov stable.
 – If λ = −11  and there is just one eigenvector associated with this eigenvalue, thus the 

general solution is

( ) ( ) ( ) ( )= + +t c c t t c tv p pe e ,t t
1 2 1

i
2 2

i

   and is unstable.
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 • Hyperbolic type: λ ∈R1 , but λ| | ≠ 11  (and λ λ= 1/2 1).

 – If λ > 11 , then the solution is

( ) ( ) ( )= +µ µ−t c t c tv p pe e .t t
1 1 2 2

1 1

 – If λ <−11 , then the solution is

( ) ( ) ( )= +µ µ−t c t c tv p pe e e e .t t t t
1 1

i
2 2

i1 1

Thus, the origin is unstable.
A useful result from Rafael Ortega [19] considers the nonlinear Hill equation

( ) ( ) ( )″ + + + =−y a t y c t y d t y, 0,n2 1 (A.5)

with ⩾n 2, where the functions →R Ra c, :  are continuous, T-periodic, and ( )∫ | | ≠c t 0
T

0
, 

and the function ( ) →× −ε εR Rd : , , for >ε 0, is continuous, has continuous derivatives of 
all orders with respect to y, is T-periodic function with respect to t, and ( ) ( )= | |Od t y y, n2  as 

→y 0 uniformly with respect to ∈Rt .
The linear part around the solution y  =  0 of (A.5) is

( )″ + =y a t y 0. (A.6)

Theorem 12 (Ortega’s theorem). Assume the following:

 1. Equation (A.6) is stable.
 2. ⩾c 0 or ⩽c 0.

Then y  =  0 is a stable solution of (A.5).
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