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Right Results via Wrong Arguments 
and Wrong Results via Right Arguments
In his very entertaining book [1], 

V. Arnold discusses the adiabatic invari-
ance of the pendulum — a classical prob-
lem that Einstein addressed when quantum 
mechanics was being born. Einstein was 
motivated by the desire to explain the 
constancy of Planck’s constant. Why does 
the energy-to-frequency ratio of photons 
remain unchanged, despite the buffeting of 
the emitting atom by surrounding fields? 
How does the atom “remember” this ratio? 

In a (probably tentative) attempt at an 
explanation, Einstein pointed out a classi-
cal analog of this “memory” in the simple 
pendulum. He showed that the energy-to-
frequency ( / )E w  ratio for a linearized 
pendulum remains nearly unchanged if the 
string’s length is slowly changed by a finite 
amount (e.g., by half).1 The physical quan-
tity E/w  has a geometrical meaning: it is 
the area inside the closed orbit in the phase 
plane when the pendulum’s length is fixed. 
Such near-constant quantities are called 
adiabatic invariants.

In his book, Arnold deals with the linear-
ized pendulum (see Figure 1), whose angle q
he models by the standard textbook equation

	       θ λθ+ = 0, 		   (1)

where l=g/ and   is the length of the 
string. If —and hence l—changes adia-
batically (i.e., slowly), the area enclosed by 
the trajectory in the phase plane ( , )q q  with 
a frozen l is an adiabatic invariant. For 
example, if   changes with small speed e 
over a long time 1/ ,e  then the area changes 
by the small amount O( )e  over the course of 
this long time. The area thus changes little 
even if   changes appreciably, say by half.

1  This “memory” is not perfect, unlike in 
quantum mechanics.

To see what this near-constancy says 
about the amplitude of oscillations, we 
observe that the trajectory in the phase 
plane of (1) when  is frozen is an ellipse:
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max
cos ,

where w= g / .  The area of this ellipse 

is πθ ω π θ
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is an adiabatic invariant. According to (2), 
slowly shortening  decreases the amplitude 
q
max
. But this answer is wrong — the oppo-

site happens in reality (as I show later). But 
Arnold escaped the wrong conclusion (2) by 
making an error in another place: he took 
l= /g  instead of the cor-
rect l=g/ .  This incorrect 
choice yielded

                  1 4/
max
q             (3)

instead of (2) as an adiabatic 
invariant. Despite being the product of an 
error, (3) correctly predicts that shortening 
  increases q

max
. How can the right solu-

tion give the wrong answer and the wrong 
solution give the seemingly right answer?2 

Actually, (3)—although more plausible 
physically than (2)—is still incorrect. What 
is going on?  The resolution of this mess 
is that the fundamental premise—i.e., the 
familiar equation (1)—is an incorrect model 
of a pendulum with variable length.

2 In fact, a reader recently corrected 
Arnold’s error and came, as we just did, to 
the conclusion (2) that—despite the correct 
argument—is wrong. Trying to resolve this 
paradox prompted this article.

Fixing Equation (1)
The standard textbook derivation of (1) 

does not work if   varies; instead, we apply 
the rotational version of Newton’s second 
law to the pendulum’s bob — the point 
where the entire mass is concentrated:

				     (4)
d
dt
( )angular momentum torque.=

Here the angular momentum and torque are 
relative to the fixed pivot O. Deciphering 
the quantities in (4) yields the ordinary dif-
ferential equation for q:
	
				     (5)
	    

d
dt

g( )� � �2q q=−
	

(after cancelling the mass and replacing 
sin q  with q  on the right). 
This equation coincides with 
(1) for = const., but not oth-
erwise. What is the correct 
adiabatic invariant? We write 
(5) as a Hamiltonian system 
and express the area bounded 

by a trajectory for frozen . To that end, we 
introduce the momentum p= � �2q  (angular, 
in fact) and rewrite (5) as a system:

             � � � �q q= =−−2p p g, .

For frozen , trajectories are ellipses with 
semiaxes q

max
 and p

max max
,= 2θ ω  where w 

is as before. The area of such an ellipse is
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using w= g / ,  so that

	   3 4/ max
.q » const 	  (6)

is an adiabatic invariant. This is a correction 
of (3) (which—although an improvement 
over (2)—is still off by a factor of  ) and 
confirms that shortening   increases q

max
.

A Physical Plausibility Argument
How can we see without calculation that 

shortening  increases q
max
? As we shorten 

  by pulling in the string, we do work 
against the string’s tension. Averaged over 
one swing, this tension is a little bit more 
than the weight due to the centrifugal effect. 
So we do extra work in addition to raising 
the bob. This extra goes towards increasing 

the pendulum’s “internal” energy, i.e., the 
kinetic energy (K.E.) at the lowest point 
in the swing. And so K.E. increases as we 
shorten . But a shorter  and greater K.E. 
imply greater angular amplitude.

I must confess that when I reviewed 
Arnold’s book [2], I missed the fundamen-
tal error: the inapplicability of (1). I only 
realized that something was wrong when 
a reader noticed that /g  should be g/ ,  
thus changing Arnold’s plausible conclu-
sion (3) to the implausible (2).

A Wrong Solution                     
with the Right Answer

Here is another twist to the story. 
Instead of q, we could use the arc length 
s = q that—for the pendulum of fixed 
length—satisfies

        ��
�

s s
g

+ = =l l0, . 	  (7)

This again is a wrong model of the pendu-
lum with variable , just like the first equa-
tion in this article. But surprisingly, (7) has 
the correct adiabatic invariant (6) (I leave 
out the verification). Explaining why this 
wrong equation gives the correct answer is 
an interesting puzzle.

To sum up, the main mistake lies at the 
junction between math and physics. This is 
a bit reminiscent of electricity and plumb-
ing, where shorts or leaks often arise at con-
nections. To mutilate Winston Churchill’s 
famous phrase almost beyond recognition, 
rarely have so many mistakes been made in 
such a small problem.
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Figure 1. 1a. A mathematical pendulum. 1b. The area in the phase plane for fixed  is an adia-
batic invariant. Figure courtesy of Mark Levi.


