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We study a simple model of bicycle motion: a segment of fixed length in multi-

dimensional Euclidean space, moving so that the velocity of the rear end is always

aligned with the segment. If the front track is prescribed, the trajectory of the rear

wheel is uniquely determined via a certain first order differential equation—the bicycle

equation. The same model, in dimension two, describes another mechanical device,

the hatchet planimeter. Here is a sampler of our results. We express the linearized

flow of the bicycle equation in terms of the geometry of the rear track; in dimension

three, for closed front and rear tracks, this is a version of the Berry phase formula.

We show that in all dimensions a sufficiently long bicycle also serves as a planimeter:

it measures, approximately, the area bivector defined by the closed front track. We

prove that the bicycle equation also describes rolling, without slipping and twisting,

of hyperbolic space along Euclidean space. We relate the bicycle problem with two

completely integrable systems: the Ablowitz, Kaup, Newell, and Segur (AKNS) system

and the vortex filament equation. We show that “bicycle correspondence” of space curves

(front tracks sharing a common back track) is a special case of a Darboux transformation

associated with the AKNS system. We show that the filament hierarchy, encoded as a

single generating equation, describes a three-dimensional bike of imaginary length.

Communicated by Prof. Igor Rivin
Received July 14, 2017; Revised March 9, 2018; Accepted April 13, 2018

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny087/4998816 by Pennsylvania State U

niversity user on 15 January 2019



2 G. Bor et al.

We show that a series of examples of “ambiguous” closed bicycle curves (front tracks

admitting self bicycle correspondence), found recently F. Wegner, are buckled rings, or

solitons of the planar filament equation. As a case study, we give a detailed analysis of

such curves, arising from bicycle correspondence with multiply traversed circles.

1 Introduction

This paper concerns a simple model for bicycle motion. An idealized bike is an oriented

segment of fixed length that moves in such a way that the velocity of the rear end

is aligned with the segment: the rear bicycle wheel is fixed on its frame, whereas

the front wheel can steer, see Figure 1. The same “no skid” non-holonomic constraint

describes the bicycle motion in Rn (and, more generally, in any Riemannian manifold;

e.g., hyperbolic and elliptic spaces).

The bicycle model. The bicycle model has attracted much attention in recent years, due

in part to its unexpected relations with other mathematical problems, old and new. We

start with a brief description of these relations and recent work on this bicycle model.

If the front track is prescribed, the trajectory of the rear wheel is uniquely

determined, once the initial orientation of the bicycle is chosen, via a certain first order

differential equation, the bicycle equation (equation (4) of Section 2). In dimension two,

this equation is equivalent to the much studied stationary Schrödinger, or Hill, equation

ẍ + p(t)x = 0, whose potential p(t) depends on the geometry of the front track and the

length of the bicycle [33, 34].

The bicycle monodromy. Associated with any given front track (closed or not), one

defines the bicycle monodromy, that is, the map Sn−1 → Sn−1 which assigns to each

initial orientation of the bike its final orientation once the front wheel completes its

Fig. 1. The bicycle front and rear tracks.
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Tire Tracks and Integrable Curve Evolution 3

Fig. 2. The hatchet planimeter.

travel. In dimension two, Foote [17] observed that this map is a Möbius transformation;

this observation was extended to Rn in [35]; we give a new proof in Theorem 3.

The hatchet planimeter and Menzin’s conjecture. The bicycle model in dimension two

describes also a device, known as the hatchet (or Prytz) planimeter, for measuring areas

of planar domains. The hatchet planimeter consists of a rod with a hatchet blade fixed

at one end and a pointed pin at the other, as shown in Figure 2. To measure the area of

a planar region, one traces its boundary with the pin; the hatchet slides on the paper

without sideslip, behaving like the rear wheel of a bike.

The angle θ between the hatchet’s initial and final orientations gives an approx-

imation of the area A of the region, with an error of order O(1/ℓ),

A = ℓ2θ + O(1/ℓ), (1)

where ℓ is the hatchet’s length, see [17, 18, 26]. A natural question is whether this

formula is an approximation to some exact result. In Section 2.7 we show that indeed θ

is an approximation to the solid angle of a certain cone in R3.

Planimeters were popular objects of mathematical study some 100 years ago. In

particular, Menzin (1906) conjectured that if A > πℓ2 then the monodromy has a fixed

point (i.e., for a particular initial orientation of the planimeter the trajectory of the blade

is closed). In other words, the monodromy is a hyperbolic element of the Möbius group

PSL2(R). This conjecture was proved in [35]; see [18, 38] for expository accounts and [27]

for a version of this theorem in spherical and hyperbolic geometries.

Bicycle correspondence. A closed rear track determines two front tracks (one riding

forward and the other backward relative to some chosen direction of the rear track).

These two front tracks are said to be in bicycle correspondence. See Figure 3.

Bicycle correspondence of curves has a number of remarkable properties: it

satisfies the so-called Bianchi permutability and it preserves the conjugacy class of the

bicycle monodromy (with an arbitrary length of the bicycle, not only the one that defines
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4 G. Bor et al.

Fig. 3. The heavy and dotted curves are in bicycle correspondence; the thin curve is their common

back track.

the bicycle correspondence), see [47, 48] and Section 3.1 below. As a result, bicycle

correspondence has infinitely many conserved quantities, starting with the perimeter.

In dimension three, bicycle correspondence is intimately related to the well-

studied filament (a.k.a. binormal, smoke ring, localized induction) equation, a com-

pletely integrable dynamical system on the space of smooth closed curves in R3,

equivalent to the nonlinear Schrödinger equation via the Hashimoto transformation

[25]. Bicycle correspondence is the Darboux–Bäcklund transformation of the filament

equation; it commutes with the flow of the filament equation and shares with it its

integrals and an invariant symplectic structure [48].

Zindler curves. An interesting problem is whether one can determine the direction of

motion given closed rear and front tracks of a bicycle. Usually, this is possible, but

sometimes it is not (e.g., if the tracks are concentric circles), see [16]. The front track

in such an ambiguous pair of curves is in bicycle correspondence with itself; in other

words, two points, x and y, can traverse this curve in such a way that the distance |xy|

remains constant and the velocity of the midpoint of the segment xy is aligned with this

segment. Let us call the curves with this property Zindler curves (see [56] and Figure 4).

Incidentally, Zindler curves provide solutions to another problem, Ulam’s prob-

lem in flotation theory ([43], problem 19): which bodies float in equilibrium in all

positions? In the two-dimensional case, the boundary of such a body is a Zindler curve.

(See [5, 41, 42] for early work and [23] for historical information; in particular, about

Herman Auerbach, 1901–1942). Recently, a wealth of results concerning this problem

was obtained in [6, 7, 46] and in a series of papers by F. Wegner [50]–[55]. Wegner

constructed a family of nontrivial Zindler curves (he did not use this terminology),

described explicitly in terms of elliptic functions. He was motivated by a study of the

motion of an electron in a magnetic field whose strength depends quadratically on the
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Tire Tracks and Integrable Curve Evolution 5

Fig. 4. Examples of Zindler curves from [55].

distance to the origin. The “three problems” in [55] are the ambiguous tire track problem,

Ulam’s flotation problem, and the motion of an electron.

A full description of planar Zindler curves, let alone their higher-dimensional

version, is still unknown. Let us also mention a discrete version of the bicycle

correspondence and, in particular, a polygonal version of Zindler curves [46, 47].

Plan of the paper. In Section 2 we discuss various forms of the bicycle differential

equation (most of them appeared previously in the literature), paying special attention

to the most interesting two- and three-dimensional cases, and give a new proof that

the bicycle monodromy is a Möbius transformation (Theorems 1–3). Our goal here is to

present a unified, group-theoretic, approach to these foundational matters.

The geometry of bike tracks in R2 is greatly clarified by extension of the problem

to R3; without such extension some phenomena remain hidden. Theorem 4 (stated for

any dimension) is a new result: it describes the derivative of the bicycle monodromy at a

fixed point in terms of the geometry of the corresponding closed rear track. In dimension

three, one has the Berry phase formula (Corollary 2.19): the derivative in question is a

complex number whose modulus depends on the signed length of the rear track and

whose argument is the Hannay angle, that is, the area on the unit sphere bounded by the

tangent Gauss image of the rear track. This fact is then used to explain geometrically,

via Berry’s phase, why the planimeter works. A two-dimensional version of the formula

for the derivative of the monodromy at the fixed point was obtained in [35].

As we mentioned earlier, in the planar case, a sufficiently long bicycle serves as

a planimeter. In Theorem 5, we show that a similar fact holds in higher dimensions: the

bicycle measures, approximately, the area bivector, determined by the front track.

Theorem 6 of Section 2 gives yet another interpretation of the bicycle equation:

this equation describes rolling, without slipping and twisting, of the hyperbolic space

along Euclidean space, with the front track being the trajectory of the contact point.

This interpretation fits naturally with the fact that the bicycle monodromy is a Möbius

transformation, an isometry of the hyperbolic space.
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6 G. Bor et al.

Section 3 is concerned with the relation of the bicycle problem with the filament

equation. The equation defines a flow on the space of smooth closed curves in R3, a com-

pletely integrable Hamiltonian system, part of an infinite hierarchy of pairwise commut-

ing Hamiltonian vector fields. We start with a detailed description of the notion of bicy-

cle correspondence between curves and give a new proof that this correspondence pre-

serves the conjugacy class of the bicycle monodromy (Theorem 7). The filament equation

shares with the bicycle equation its invariance under bicycle correspondence, known as

the Darboux, or Bäcklund, transformation, in the context of the filament equation.

In Section 3.2, we encode the filament hierarchy in a single equation with

a formal parameter and show (Corollary 3.14) that this equation coincides with the

equation of a three-dimensional bike of imaginary length.

Given a closed front bicycle track, it is intuitively clear that if the length of

the bicycle is infinitesimal, then there exist two closed trajectories of the bicycle,

corresponding to the bicycle near-tangent to the front track, pointing either forward

or backward. Proposition 3.15 provides a rigorous analysis of this phenomenon in

dimension three. As a result, in Theorem 8, we obtain an infinite collection of integrals

of the bicycle correspondence that, conjecturally, coincide with the known integrals of

the filament equation (the Hamiltonians of the commuting hierarchy of vector fileds).

The classical Bernoulli elastica are extrema of the total squared curvature

functional among curves with fixed length. Buckled rings (or pressurized elastica) are

plane curves that are extrema of the total squared curvature functional, subject to

length and area constraints. In Section 3.3, we prove that the curves, constructed by

Wegner, are buckled rings (Theorem 9). This provides a connection with the planar

filament equation, another completely integrable system, a close relative of the (three-

dimensional) filament equation: buckled rings are solitons of the planar filament

equation, that is, evolve under its flow by isometries.

Section 4 provides a detailed study of a family of Zindler curves, the ones in

bicycle correspondence with multiply-traversed circles (Theorem 10).

The paper is concluded with two appendices: in appendix A we describe a

relation of the bicycle equation with yet another integrable system: the Ablowitz,

Kaup, Newell, and Segur (AKNS) system. We show (Theorem 12) that the bicycle

correspondence in dimension three can be thought of as a special case of a Darboux

transformation associated with the AKNS system. In appendix B we provide a proof

of the main analytical tool (Proposition 3.15) needed to establish the existence of the

integrals of the bicycle correspondence of Theorem 8.
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Tire Tracks and Integrable Curve Evolution 7

2 The Bicycle Equation and Its Monodromy

2.1 The bicycle equation

We consider a smoothly parametrized curve $(t) in Rn (the “front track”), and a real

number ℓ > 0 (the “bicycle length”); a rear track γ is, by the definition, any parametrized

curve γ (t) in Rn that satisfies

∥$(t) − γ (t)∥ = ℓ, (2)

γ (t) − $(t) is tangent to γ at γ (t). (3)

To keep track of the direction of the rear wheel relative to the front wheel,

we introduce the unit direction vector r(t) ∈ Sn−1 (see Figure 5), thus rewriting

condition (2), expressing the bicycle “rigidity” condition, as γ (t) = $(t)+ℓr(t). Condition

(3), expressing the rear wheel “no-skid” condition, is then equivalent to an ordinary

differential equation for r(t) which we now state.

Proposition 2.1. Let $(t), r(t) be parameterized curves in Rn, Sn−1, respectively, ℓ > 0,

and γ (t) = $(t) + ℓr(t). Then the “no-skid” condition (3) is equivalent to

ℓṙ = −v + (v · r)r, (4)

where v = $̇ and where · denotes the scalar product.

Equation (4) is the ℓ-bicycle equation in Rn, defined for every parametrized front

track $(t) and bicycle length ℓ.

Proof. Let us decompose v = $̇ as v = v∥ + v⊥, where v∥, v⊥ are the orthogonal

projections of v onto Rr, r⊥, respectively, as in Figure 6. Then conditions (2)–(3) are

Fig. 5. The bicycling “no skid” condition.
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8 G. Bor et al.

Fig. 6. The proof of Proposition 2.1.

equivalent to γ̇ = v∥. From γ = $ + ℓr follows γ̇ = v + ℓṙ, hence γ̇ = v∥ is equivalent to

0 = v⊥ + ℓṙ. Now v⊥ = v − v∥ = v − (v · r)r, from which (4) follows. !

Remark 2.2. Equation (4) was derived above for r(t) ∈ Sn−1 and indeed it leaves

invariant the condition ∥r∥ = 1, as can be easily checked. But it makes sense also for

arbitrary r(t) ∈ Rn, for which it has also an interesting mechanical interpretation, at

least in the ∥r∥ < 1 case (see Section 2.10 below).

Remark 2.3. Even if $ is a regularly immersed curve, that is, $̇ does not vanish, γ̇ may

vanish. From (4), we see that γ̇ = v + ℓṙ vanishes precisely when v · r = 0, that is, when

the bicycle is perpendicular to the front wheel track $.

In the planar case, the resulting singularities of γ are generically semi-cubical

cusps (see [35], Section 2, for more information).

The conceptual explanation of the singularities is as follows (this explanation

can be safely skipped at first reading). The configuration space of oriented segments of

length ℓ in Rn is the spherization of the tangent bundle STRn, and the non-holonomic

“no-skid” constraint defines a completely non-integrable n-dimensional distribution D

therein. The motion of the bicycle is a smooth curve in STRn tangent to the distribution

D (i.e., a horizontal curve relative to the distribution).

The two projections STRn → Rn, to the front and rear ends of the segment, yield

the front and rear bicycle tracks, see Figure 7. The former projection is transverse to

D , therefore the front track is a smooth curve, but the kernel of the latter projection is

contained in D , and hence the rear track may have singularities; this happens when the

horizontal curve is tangent to this kernel.

2.2 The bicycle monodromy

Given a parameterized curve $(t) in Rn, consider the family of unit spheres centered at

points of $, and identify these spheres with each other by parallel translation (such an
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Tire Tracks and Integrable Curve Evolution 9

Fig. 7. The two projections STRn → Rn.

Fig. 8. The tractrix.

identification is assumed throughout the paper). Fix a point $(t0) on the curve $. Then,

according to Proposition 2.1, conditions (2) and (3) define, for each t (for which $(t) is

defined) and ℓ > 0, a diffeomorphism

Mt
ℓ : Sn−1 → Sn−1,

called the bicycle monodromy, that maps r0 to r(t), where r(t) is the solution to (4)

satisfying the initial condition r(t0) = r0. In other words, Mt
ℓ is the flow of the

differential equation (4).

Example 2.4. (See Figure 8) Let $ be the x-axis in R2, parameterized by $(t) = (t, 0).

Substitute r = (cos θ , sin θ) in (4), where θ = θ(t), and obtain ℓθ̇ = sin θ . Another

substitution p = tan(θ/2) linearizes this equation, yielding ℓṗ = p, with solution

p(t) = p0et/ℓ. The resulting rear track γ is the classical tractrix, and we can use the

solution p(t) to give it an explicit parametrization (see, e.g., [17] for details).
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10 G. Bor et al.

Fig. 9. The circular tractrix.

Example 2.5. (See Figure 9) Let $ be the unit circle in R2, parameterized by $(t) =
(cos t, sin t). As in the previous example, substitute r = (cos θ , sin θ) in (4), giving ℓθ̇ =
− cos(θ − t). Changing to φ := θ − t gives φ̇ = −1 − (cos φ)/ℓ. Changing again to p :=
tan(φ/2) gives

ṗ = − 1
2ℓ

[
p2(ℓ − 1) + ℓ + 1

]
.

This is a constant coefficient Riccati equation that can be solved explicitly in elementary

functions (see Section 4 below for details).

2.3 Bicycling in R2

There are a number of reformulations of (4) for n = 2 found in the literature [15, 17, 18,

35, 46]. We collect them in this subsection.

First, we use an angle coordinate θ on S1, that is, substitute r = (cos θ , sin θ) in

(4), obtaining,

ℓθ̇ = v1 sin θ − v2 cos θ , $̇ = (v1, v2). (5)

Now the projective coordinate p = tan(θ/2), that is, the slope of a vector with the

argument θ/2, satisfies the Riccati equation

ṗ = 1
2ℓ

(
−v2 + 2v1p + v2p2

)
, $̇ = (v1, v2). (6)

A consequence of (6) is the following theorem of Foote [17].
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Tire Tracks and Integrable Curve Evolution 11

Theorem 1. The flow of (5) is the projection to S1 of the flow of the linear system

(
ẋ
ẏ

)
= − 1

2ℓ

(
v1 v2

v2 −v1

)(
x
y

)
(7)

via the double covering map (using complex notation) z = x + iy '→ r = z2/|z|2 or, more

explicitly,

(x, y) '→ r =
(

x2 − y2

x2 + y2 ,
2xy

x2 + y2

)
.

Thus the bicycle monodromy for n = 2 is given by elements of the Möbius group PSL2(R)

of fractional linear transformations p '→ (ap + b)/(cp + d).

Proof. It is well-known that the flow of a Riccati equation consists of Möbius

transformations (see, e.g., [28], p. 24). Let us review the argument. Consider the linear

system

(
ẋ
ẏ

)
=

(
a b

c −a

) (
x
y

)
. (8)

One can check easily that a solution (x(t), y(t)) of this system projects to a solution p(t) =
y(t)/x(t) of the equation

ṗ = c − 2ap − bp2. (9)

Thus the flow of the Riccati equation (9) is the projectivization of the flow of the linear

system (8). Applying this procedure to (7), we obtain (6), and thus (5). !

The next reformulation of (4) is obtained by switching to a moving frame along

$ (the Frenet–Serret frame). To this end, assume first that $ is parameterized by arc

length, so that v = $̇ is a unit tangent vector along $. Complete v to a positively oriented

orthonormal frame {v, n} along $. Then v̇ = κn, where κ is the curvature function along

$. Now we use an angle coordinate ( for r in the moving frame {v, n}, that is, let r =
ei(v = (cos ()v + (sin ()n. (Note: the angle ( is π minus the “steering angle” α of [35].)

Proposition 2.6. r = ei(v satisfies (4) for n = 2 if and only if ((t) satisfies

(̇ = sin (

ℓ
− κ.
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12 G. Bor et al.

Using the projective coordinate P = tan((/2), the last equation is equivalent to

Ṗ = P
ℓ

− κ

2
(1 + P2), (10)

which is the projectivization P = Y/X of the linear system

(
Ẋ
Ẏ

)
= 1

2

(
−1/ℓ κ

−κ 1/ℓ

) (
X
Y

)
.

The proof is a direct calculation, and we omit it.

2.4 Bicycling in R3

Similar to the n = 2 case, equation (4) for n = 3 can be reformulated in a variety of ways.

To begin with, we rewrite (4) for n = 3 using the vector product in R3.

Lemma 2.7. Equation (4), for n = 3, is equivalent to

ṙ = 1
ℓ
(v × r) × r, v = $̇. (11)

We omit the simple verification.

Next we rewrite (11) as a complex Riccati equation, that is, as the projectiviza-

tion of a two-dimensional complex linear system.

Theorem 2. The flow of (11) is the projection to S2 of the flow of the complex linear

system

(
ż1

ż2

)
= − 1

2ℓ

(
v1 v2 − iv3

v2 + iv3 −v1

) (
z1

z2

)
, $̇ = (v1, v2, v3), (12)

via the complex Hopf fibration C2 \ 0 → S2,

(
z1

z2

)
'→ r =

( |z1|2 − |z2|2

|z1|2 + |z2|2
,

2z̄1z2

|z1|2 + |z2|2

)
∈ R ⊕ C = R3.

Using the complex coordinate z = z2/z1 = (r2 + ir3)/(1 + r1) on S2 ≃ CP1, the linear

system (12) projects to the complex Riccati equation

ż = 1
2ℓ

(
−q + 2v1z + q̄z2

)
, $̇ = v = (v1, v2, v3), q = v2 + iv3. (13)
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Tire Tracks and Integrable Curve Evolution 13

Fig. 10. The Frenet–Serret frame along $.

It follows that the bicycle monodromy in R3 is given by elements of the complex

Möbius group PSL2(C).

The proof is by direct calculation which we omit. In the next subsection we give

a more conceptual (group theoretic) explanation of Theorems 1 and 2.

Remark 2.8. Note that the Riccati equation (13) reduces to (6) for q = v2, that is, for a

planar curve $ with v3 = 0.

We now derive a “moving-frame” version of (13). Assume $ is parameterized by

arc length, so that v = $̇ is a unit vector, and complete v to the Frenet–Serret frame (v,

n, b) along $, satisfying the equations

v̇ = κn, ṅ = −κv + τb, ḃ = −τn,

where κ, τ are the curvature and torsion of $. See Figure 10.

Proposition 2.9. Let r = R1v + R2n + R3b be a unit vector field along an arc length

parameterized curve $ in R3. Then r(t) satisfies (11) if and only if R = (R1, R2, R3) satisfies

Ṙ =
[

1
ℓ

E1 × R − +

]
× R, (14)

where + = τE1 + κE3 (the Darboux vector of $ in the Frenet frame) and

E1 =

⎛

⎜⎜⎝

1

0

0

⎞

⎟⎟⎠ , E3 =

⎛

⎜⎜⎝

0

0

1

⎞

⎟⎟⎠ .
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14 G. Bor et al.

Fig. 11. The null cone in R2,1. The arrows along the two cone generators show the direction of the

flow along the eigendirections of A in Lemma 2.11.

Using the complex coordinate Z = (R2 + iR3)/(1 + R1) on the R-sphere (stereographic

projection from −E1 onto the (R2, R3)-plane), we obtain the complex Riccati equation

Ż =
(

1
ℓ

− iτ
)

Z − κ

2
(1 + Z2), (15)

the projectivization Z = Z2/Z1 of the linear system

(
Ż1

Ż2

)
= 1

2

(
−1/ℓ + iτ κ

−κ 1/ℓ − iτ

) (
Z1

Z2

)
. (16)

The proof is again a direct calculation that we omit.

Note that the bracketed term in (14) is the angular velocity of the bike expressed

in the Frenet frame. Note also that (15) reduces to (10) for a planar curve (τ = 0).

2.5 Reformulation for general n using the Möbius group

In this section we present another way to interpret the bicycle flow (4). To illustrate

the idea for n = 2 (the higher dimensional case works almost verbatim), the circle ∥r∥
= 1 is embedded in Minkowski’s three-space R3 as shown in Figure 11; namely, as the

intersection of the cone x2
1 +x2

2 −x2
3 = 0 and the horizontal plane x3 = 1. Each generating

ray of the cone is uniquely determined by a unit vector r, as shown in Figure 11. We then

consider linear flows in R3 preserving the Lorentz quadratic form x2
1 + x2

2 − x2
3, so that

the cone is invariant under any such Lorentz–orthogonal flow. We show that the bicycle

flow on r at time t corresponds to a particular linear Lorentz–orthogonal flow, namely, to
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Tire Tracks and Integrable Curve Evolution 15

a flow with two eigendirections lying in the vertical plane through the origin containing

±v, where v = $̇(t).

The same construction shows how the bicycle flow extends from the circle

∥r∥ = 1 to a flow of the disk ∥r∥ < 1 by hyperbolic isometries.

We now proceed with the formal discussion for general n.

Let Rn,1 be n + 1–dimensional space equipped with the quadratic form

⟨x, x⟩ := (x1)2 + . . . + (xn)2 − (xn+1)2, x = (x1, . . . , xn+1).

Let SO+
n,1 ⊂ GL(Rn,1) be the orientation and time-orientation preserving linear isome-

tries of Rn,1 (the identity component of the Lorentz-orthogonal group On,1). Its Lie

algebra son,1 consists of (n + 1) × (n + 1) matrices, written in block form as

(
B v

vt 0

)

, v = (v1, . . . , vn)t ∈ Rn, B ∈ son (i.e., Bt = −B).

Let

Rn,1
+ = {x ∈ Rn,1 | xn+1 > 0}

and

π : Rn,1
+ → Rn, x = (x, xn+1) '→ x

xn+1
, x = (x1, . . . , xn). (17)

For each ℓ > 0, let

Hn
ℓ =

{
x ∈ Rn,1

+ | ⟨x, x⟩ = −ℓ2}
(18)

and

C =
{
x ∈ Rn,1

+ | ⟨x, x⟩ = 0
}
.

Equip Rn,1 with the flat pseudo-Riemannian metric induced by ⟨·, ·⟩,

g = ⟨dx, dx⟩ = (dx1)2 + . . . + (dxn)2 − (dxn+1)2.

Using this notation, we collect in the next proposition some standard facts about

the geometry of the SO+
n,1-action on Rn,1; see, for example, [8].

Proposition 2.10. For all n ≥ 2,

1. Hn
ℓ and C are the SO+

n,1-orbits of (ℓ, 0, . . . , 0)t and (1, 0, . . . , 0, 1)t, respectively.
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16 G. Bor et al.

2. The flat pseudo-Riemannian metric g = ⟨dx, dx⟩ on Rn,1 restricts on Hn
ℓ to a

Riemannian metric of constant negative sectional curvature −1/ℓ2, on which

SO+
n,1 acts transitively as its group of orientation preserving isometries. (Hn

1

is the “hyperboloid model” of the hyperbolic n-space.)

3. For each ℓ > 0, the restriction of π to Hn
ℓ ⊂ Rn,1

+ is a diffeomorphism onto the

unit ball Bn = {r ∈ Rn | ∥r∥ < 1}. The induced metric on Bn is

ds2
ℓ = ℓ2

1 − ∥r∥2

(
(r · dr)2

1 − ∥r∥2 + ∥dr∥2
)

. (19)

(Bn, equipped with this metric for ℓ = 1, is the Klein–Beltrami or projective

model of hyperbolic n-space.)

4. The restriction of g to C is degenerate (for all x ∈ C the line Rx ⊂ TxC
is orthogonal to TxC), descending to a conformal Riemannian metric on its

spherization Sn−1 = C/R+, isomorphic to the standard conformal structure

on Sn−1 (see next item).

5. The image of C under π is Sn−1 = ∂Bn. The metric g, restricted to C, descends

via π to the standard (“round”) conformal metric on Sn−1. The action of SO+
n,1

on C descends to Sn−1, preserving the conformal structure. The group SO+
n,1

acting in the described way is called the Möbius group Mob(Sn−1).

6. Mob(Sn), for n ≥ 2, is the full group of orientation preserving conformal

transformations of Sn. Mob(S1) is the projective group PSL2(R).

The following lemma is borrowed from [35]. We reproduce its proof here for the

convenience of the reader.

Lemma 2.11. For each v ∈ Rn, consider the linear vector field v on Rn,1, v(x) = Ax,

where

A = −
(

0n v

vt 0

)

∈ son,1.

Then, under the projection π : Rn,1
+ → Rn of formula (17), v maps to the vector field on

Rn defined by the right hand side of (4).

Proof. Let x = (x, xn+1) ∈ Rn,1
+ and δx = (δx, δxn+1) a tangent vector at x, where

x = (x1, . . . , xn). Then, by formula (17), the derivative of π at x is δx '→ (xn+1δx −
xδxn+1)/(xn+1)2. Next, let δx = v(x) = Ax. Then δx = (δx, δxn+1), where δx = −xn+1v
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Tire Tracks and Integrable Curve Evolution 17

and δxn+1 = −x · v. It follows that the image of v(x) under dπ is

xn+1(−xn+1v) − x(−x · v)

x2
n+1

= −v + (v · r)r.

!

As a consequence of the previous proposition and lemma, we obtain the

following theorem, proved for n = 2 in [17], and for general n in [35].

Theorem 3. The flow of equation (4) (for all r) is the projection via π : Rn,1
+ → Rn

(defined in (17)) of the flow of the linear system in Rn,1 with son,1 coefficient matrix

ẋ = −1
ℓ

(
0n v

vt 0

)

x, v = $̇. (20)

It follows that

(1) The bicycle monodromy Mt
ℓ : Sn−1 → Sn−1 is a Möbius transformation, well-

defined for all t for which $(t) is defined.

(2) The flow of (4) preserves the unit open ball Bn = {∥r∥ < 1}, on which it acts by

isometries of the hyperbolic metric of (19).

Remark 2.12. In Section 2.10 below we interpret the hyperbolic isometries of item (2)

of Theorem 3 above as “rolling without slipping and twisting” of Hn
ℓ along $ ⊂ Rn. The

flow of (4) also preserves the complement of the closed unit ball {∥r∥ > 1} on which it

acts by isometries of a (curved) Lorenzian metric. We do not pursue here this aspect

of the bicycle monodromy, but it would be interesting to find a mechanical-geometric

interpretation of this flow.

Remark 2.13. The bicycle equation (4) can be also reformulated in the language of

bundles and connections, which some readers might find useful (a similar interpretation

for n = 2 appeared in [17]). This formulation leads to a straightforward generalization

of the bicycling equation on any Riemannian manifold. We sketch here this formulation.
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18 G. Bor et al.

Consider the son,1-valued one-form on Rn

θ = 1
ℓ

⎛

⎜⎜⎜⎜⎜⎝

0 · · · 0 dx1
...

...
...

...

0 · · · 0 dxn

dx1 · · · dxn 0

⎞

⎟⎟⎟⎟⎟⎠
. (21)

We view θ as the one-form of an SO+
n,1-connection on the trivial principal bundle Rn ×

SO+
n,1 → Rn. For any space F on which SO+

n,1 acts, θ defines the covariant derivative

D = d + θ of sections f : Rn → F of the associated bundle Rn × F → Rn. Namely,

Df = df + θ · f , and a section is parallel if Df = 0.

Equation (20) is then the equation for parallel transport in the vector bundle

associated to the standard representation of SO+
n,1 on Rn,1. The projectivization of this

representation has three orbits: the projectivized null cone Sn−1, its interior Bn, and the

exterior RPn \ Bn. On each of these orbits SO+
n,1 acts as the automorphism group of a

different structure: isometries of a hyperbolic metric on Bn, Möbius transformation of

Sn−1, and isometries of a Lorentzian metric on RPn \ Bn. The parallel transport in the

associated bundle Rn × RPn → Rn is given by the bicycle equation (4), where r is used

as an affine coordinate.

For an arbitrary Riemannian manifold M the ℓ-bicycling equation defines an

SO+
n,1-connection on its unit tangent sphere bundle. In general, this connection is non-

flat, unless M has a metric of constant curvature −1/ℓ2, that is, is hyperbolic, in which

case the connection defines an interesting foliation of the unit tangent bundle of M. See

Example 3.6.17 on p. 165 of [37].

2.6 The special isomorphisms so2,1 ≃ sl2(R), so3,1 ≃ sl2(C)

For n = 2, 3 there are “special isomorphisms” which enable us to replace (20) with a

more compact linear system with 2 × 2 real or complex matrices instead of 3 × 3 or 4 ×
4 real matrices (respectively).

2.6.1 n = 2

Let sl2(R) be the Lie algebra of SL2(R), that is, the set of traceless real 2 × 2 matrices

A. We equip sl2(R) with the quadratic form − det(A); this form has signature (2, 1),

suggesting a relation with R2,1; indeed, one has the following.
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Tire Tracks and Integrable Curve Evolution 19

Proposition 2.14. The map R2,1 → sl2(R),

x = (x1, x2, x3) '→ A =
(

−x2 x1 + x3

x1 − x3 x2

)

,

is an isometry, mapping the quadratic form ⟨x, x⟩ = (x1)2 + (x2)2 − (x3)2 to − det(A).

The conjugation action of SL2(R) on sl2(R), A '→ gAg−1, preserves the quadratic form

− det(A). The resulting homomorphism SL2(R) → SO+
2,1 is surjective with kernel {I, −I}.

The corresponding isomorphism of Lie algebras sl2(R) ≃ so2,1 is

(
v1 v2

v3 −v1

)

'→

⎛

⎜⎜⎝

0 v3 − v2 2v1

v2 − v3 0 v2 + v3

2v1 v2 + v3 0

⎞

⎟⎟⎠ . (22)

Proof. A direct calculation which we omit. !

In particular, applying the inverse of the isomorphism (22) to the coefficient

matrix of the system (20) for n = 2,

−1
ℓ

⎛

⎜⎜⎝

0 0 v1

0 0 v2

v1 v2 0

⎞

⎟⎟⎠ '→ − 1
2ℓ

(
v1 v2

v2 −v1

)

,

we obtain the system (7) (which we obtained previously by different means):

(
ẋ
ẏ

)
= − 1

2ℓ

(
v1 v2

v2 −v1

)(
x
y

)
.

2.6.2 n = 3

Let H be the space of 2 × 2 complex Hermitian matrices, A = Āt, equipped with the (real)

quadratic form − det(A) of signature (3, 1).

Proposition 2.15. The map R3,1 → H,

x = (x1, x2, x3, x4) '→ A =
(

−x1 + x4 −x2 + ix3

−x2 − ix3 x1 + x4

)

,
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20 G. Bor et al.

is an isometry, mapping the quadratic form ⟨x, x⟩ = (x1)2+(x2)2+(x3)2−(x4)2 to − det(A).

The linear action of SL2(C) on H, A '→ gAḡt, preserves the quadratic form − det(A). The

resulting homomorphism SL2(C) → SO+
3,1 is surjective with kernel {I, −I}. The associated

isomorphism of Lie algebras sl2(C) ≃ so3,1 is

(
a b

c −a

)

'→

⎛

⎜⎜⎜⎜⎝

0 b1 − c1 −b2 − c2 −2a1

−b1 + c1 0 2a2 −b1 − c1

b2 + c2 −2a2 0 b2 − c2

−2a1 −b1 − c1 b2 − c2 0

⎞

⎟⎟⎟⎟⎠
, (23)

where a = a1 + ia2, b = b1 + ib2, c = c1 + ic2.

Proof. Another computation that we omit. !

Applying the inverse of the isomorphism (23) to the coefficient matrix of the

system (20) for n = 3,

−1
ℓ

⎛

⎜⎜⎜⎜⎝

0 0 0 v1

0 0 0 v2

0 0 0 v3

v1 v2 v3 0

⎞

⎟⎟⎟⎟⎠
'→ − 1

2ℓ

(
v1 v2 − iv3

v2 + iv3 −v1

)

,

we obtain the two-dimensional complex linear system

(
ż1

ż2

)
= − 1

2ℓ

(
v1 v2 − iv3

v2 + iv3 −v1

) (
z1

z2

)
, $̇ = (v1, v2, v3),

which we also obtained previously in (12) by different means.

Remark 2.16. Although not used in this article, two other special isomorphisms are

so5,1 ≃ sl2(H) and so9,1 ≃ sl2(O) (see, e.g., [49]). Hence the bicycle equation in R5 and R9

can also be “linearized” by two-dimensional quaternionic and octonionic linear systems

(respectively), with the corresponding Riccati equations. The quaternionic system is

(
ḣ1

ḣ2

)
= − 1

2ℓ

(
v1 q̄

q −v1

)(
h1

h2

)
,
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Tire Tracks and Integrable Curve Evolution 21

where

$̇ = (v1, . . . , v5), q = v2 + iv3 + jv4 + kv5 ∈ H,

with the quaternionic Riccati equation for h = h2h−1
1

ḣ = 1
2ℓ

(−q + 2v1h + hq̄h).

2.7 A Berry phase formula for the bicycle monodromy

Let $ be a parameterized front curve in Rn and Mℓ : Sn−1 → Sn−1 the associated ℓ-bicycle

monodromy between two points $(t0), $(t1) on $, with t0 < t1.

Theorem 4. For every n ≥ 2, ℓ > 0, and r0 ∈ Sn−1, the derivative M ′
ℓ(r0) : Tr0Sn−1 →

Tr1Sn−1 is given by

M ′
ℓ(r0) = e−Lγ /ℓP,

where

• r1 = r(t1) and r(t) is the solution to (4) with r(t0) = r0,

• γ (t) = $(t) + ℓr(t) is the corresponding rear track,

• Lγ = −
∫ t1

t0
r · v dt, v = $̇, is the (signed) length of γ ,

• P ∈ Iso(Tr0Sn−1, Tr1Sn−1) is the parallel transport in TSn−1 (with respect to

the Levi–Civita connection) along the curve r(t), t0 ≤ t ≤ t1.

Remark 2.17. The sign of the length element −r · v dt of the rear track is adjusted to

coincide with the geometric intuition of forward riding of γ being counted as positive

length and backward riding as negative. The sign is reversed at a cusp.

Proof of Theorem 4. Note first that for every ξ0 ∈ Tr0Sn−1, one has M ′
ℓ(r0)ξ0 = ξ(t1),

where ξ(t) ∈ Tr(t)Sn−1 is the solution to the linearization of (4) along r(t), satisfying

ξ(t0) = ξ0; namely,

ℓξ̇ = (v · ξ)r + (v · r)ξ , v = $̇.

It follows that (v · r)ξ/ℓ is the orthogonal projection of ξ̇ on TrSn−1. But this is precisely

the definition of the covariant derivative along a submanifold in Rn. That is,

∇ṙξ = r · v
ℓ

ξ , (24)

where ∇ is the Levi–Civita connection on Sn−1.
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22 G. Bor et al.

Next, let u := (r · v)/ℓ, f (t) := exp
(∫ t

t0
u(s) ds

)
and ξ̂(t) the parallel transport of

ξ(t0) along r(t); that is, ξ̂(t0) = ξ(t0), and ∇ṙξ̂ = 0. The theorem then amounts to ξ = f ξ̂ .

To show this, it is enough to show that both ξ , f ξ̂ have the same value at t = t0 and

satisfy the same first order differential equation. By (24), ξ satisfies ∇ṙξ = uξ . Now f , by

its definition, satisfies f (t0) = 1 and ḟ = uf , hence ( f ξ̂)(t0) = ξ(t0) and

∇ṙ( f ξ̂) = ḟ ξ̂ + f ∇ṙξ̂ = ḟ ξ̂ = u( f ξ̂).

Therefore ξ = f ξ̂ . !

Remark 2.18. For n ≥ 3, Theorem 4 implies that Mℓ is a conformal transformation

(since parallel transport is an isometry), so it gives an alternative proof of Theorem 3,

item 1.

The most interesting case of Theorem 4 is that of a closed curve in R3, where

Mℓ ∈ PSL2(C). Generically, Mℓ has two fixed points in S2 and is thus conjugate to the

Möbius transformation z '→ λz, whose fixed points are 0, ∞, with M ′(0) = λ, M ′(∞) =
1/λ. The conjugacy class of M is thus given by the derivatives λ±1 at the fixed points.

Corollary 2.19. (Berry phase formula) Let $ be a closed curve in R3, r0 ∈ S2 a fixed

point of the ℓ-bicycle monodromy of $ (with respect to some initial point $(t0)), and γ

the corresponding closed rear track. Then

M ′
ℓ(r0) = e−(Lγ /ℓ)+i+, (25)

where Lγ is the signed length of γ and + is the area in S2 enclosed by the spherical curve

r(t).

Proof. By the Gauss–Bonnet theorem, parallel transport around a closed curve in S2 is

a rotation by an angle equal to the area of the spherical region bounded by the curve. !

Remark 2.20.

(i) The last corollary and its proof still hold when the spherical curve r(t) is

not simple, provided + is defined as the algebraic (or signed) area of the

spherical region bounded by r(t); see, for example, [2].
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Tire Tracks and Integrable Curve Evolution 23

(ii) For n = 2, in the case of hyperbolic monodromy, with γ being one of the

two periodic rear tracks, the formula reduces to M ′
ℓ(r0) = e−Lγ /ℓ, as in

Theorem 3.6 of [35]. This formula determines the conjugacy class of the

bicycle monodromy when it is a hyperbolic element of PSL2(R). The elliptic

case, on the other hand, becomes clear only once we embed the bike in R3, as

explained below in Section 2.9.

(iii) For a generic $ in R3, the Mℓ–iterates of all points on the sphere, except for

the unstable fixed point, approach the stable fixed point. This means that

all spatial motions of the bike, save the unstable periodic one, approach the

stable periodic motion. The case of planar $ (in R3) is special: Mℓ commutes

with reflections in the plane, and in the elliptic case M is conjugate to a rigid

rotation of S2. All the bike motions in R3 are then periodic or quasiperiodic

with two frequencies.

(iv) In the planar elliptic case embedded in R3, the length of each of the two

periodic rear tracks is zero, as follows from (25).

(v) Here is a heuristic explanation for the appearance of Berry phase + in

formula (25). Figure 12 shows two infinitesimally close bikes, with rear

wheels at R, R1, sharing the same front trajectory $ at F, with R tracing

a closed back track γ and R1 a nearby (not necessarily closed) back track.

Consider the unit vector ξ̂ = RR1/|RR1|. The key observation is that the

angular velocity of ξ̂ around the axis RF is zero.

To justify this, let us decompose v = Ḟ as v = vplane + v⊥, where vplane is the

orthogonal projection of v unto the FRR1–plane and v⊥ the perpendicular

component, as shown in Figure 12. Let us consider separately the effects of

vplane and v⊥.

First, the motion of R and R1 due to vplane occurs in the plane RFR1, and

thus ξ̂ ∥ RR1 does not rotate about any axis in that plane, let alone about FR.

Second, the component v⊥ does not even contribute to the velocities of R and

R1, and therefore v⊥ has no effect on the motion of ξ̂ .

This zero angular velocity statement is equivalent to saying that ξ̂ undergoes

parallel transport on the sphere centered at F along the curve traced on it

by R. It follows, by the Gauss–Bonnet theorem, that the vector ξ̂ will end up

rotated by an angle, equal to the solid angle + (or spherical area) bounded

by the closed path traced by R, as viewed by an observer moving with F.
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24 G. Bor et al.

Fig. 12. A heuristic explanation for the appearance of Berry’s phase.

2.8 Bicycle as a planimeter in Rn

As we mentioned in the introduction, the planar bicycle can serve as a planimeter. In

this section, we examine the higher dimensional version of this phenomenon.

Let $ be a closed curve in Rn, the bicycle front track, of length L. Let the bicycle

length be ℓ = 1/ε; as before, v = $̇ and r is a unit vector along the bicycle segment. The

bicycle equation (4) with an initial condition is

⎧
⎨

⎩
ṙ = ε(−v + (v · r)r),

r(0, ε) = r0.
(26)

The following theorem generalizes the hatchet planimeter formula (1). The area

bounded by a closed plane curve $(t) is given by the integral

1
2

∫
det($, $̇) dt.

For a curve $ in Rn, an analog of the area is the area bivector

1
2

∫
$ ∧ $̇ dt,

which contains the information about the areas bounded by the projections of the curve

on all coordinate two-planes, see Remark 2.22 below. This bivector can be interpreted

as a skew–symmetric linear operator.
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Tire Tracks and Integrable Curve Evolution 25

Theorem 5. The bicycle vector r, that is, the solution of (26), undergoes a net rigid

rotation, up to an O(ε3)–error; more precisely,

r(L) = r0 + ε2Ar0 + O(ε3), (27)

where A : Rn → Rn is the skew–symmetric “area operator” of $, given by

Ar0 =
∫ L

0
($ · r0)$̇ dt, for r0 ∈ Rn.

For n = 3,

Ar0 =
∫ L

0
($ · r0)$̇ dt = Â × r0, (28)

where

Â = 1
2

∫ L

0
($ × $̇) dt

is the area vector of $. Thus in R3, modulo an O(ε3)–error, the initial bike direction r0

is rotated around the direction Â through the angle ∥Â∥, equal to the signed area of the

projection of $ on a plane perpendicular to Â.

Proof. The solution r(t, ε) of the Cauchy problem (26) is analytic in ε since so is the

right-hand side, and thus can be expanded in a Taylor series in ε, starting with

r(t, ε) = r(t, 0) + r1(t)ε + r2(t)ε2 + O(ε3), (29)

where r1(t) = ∂εr(t, 0), r2(t) = 1
2∂2

ε r(t, 0). To find r(t, 0), r1(t), r2(t), we first set ε = 0 in

(26) to find r(t, 0) ≡ r0. Differentiating (26) by ε two times and setting ε = 0 after each

differentiation, we get

ṙ1 = −v + (v · r0)r0 (30)

and

ṙ2 = (v · r1)r0 + (v · r0)r1. (31)

From (30),

r1 = −$ + ($ · r0)r0 + c, (32)

and in particular r1(L) = r1(0). Substituting (32) into (31) and integrating, we find,

after simplification, the sole surviving term (other terms drop out as the derivatives
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of periodic functions):

r2

∣∣∣∣
L

t=0
= −

∫ L

0
($̇ · r0)$ dt =

∫ L

0
($ · r0)$̇ dt,

the last step using integration by parts.

For n = 3, integrating the identity

($ × $̇) × r0 = (r0 · $)$̇ − (r0 · $̇)$

over a period and using integration by parts, one obtains the stated formula. !

Remark 2.21. Theorem 5 reveals an interesting behavior of the bicycle equation in R3

for large bike length. On the one hand, the bicycle vector field on S2 given by (26) is

“maximally hyperbolic”, in the sense that the two instantaneous equilibria at r = ±v/∥v∥
are antipodal nodes on the r-sphere, one stable (at −v/∥v∥), the other unstable (at v/∥v∥).

On the other hand, the time L map r0 '→ r(L) of this vector field, that is, the monodromy

map, is “maximally elliptic” in the sense that it is O(ε3)–close to a rigid rotation, with

antipodal pair of elliptic fixed points.

Remark 2.22. The entries Aij = −Aji are the signed areas of the projections of $ onto

the ijth planes, so A is the area bivector of the curve $. For n = 2,

A =
(

0 −A$

A$ 0

)

,

where A$ is the signed area of $, reproducing the planimeter formula (1).

Remark 2.23. The classical literature on the hatchet planimeter contains a series,

in the negative powers of the length of the planimeter ℓ, of its turning angle θ , see,

for example, [26]. This makes it possible to estimate the error in measuring the area

effectively. It should be possible to obtain a similar power expansion in the multi-

dimensional setting; we do not dwell on it here.

2.9 A bird’s eye view of the hatchet planimeter

The results of the last two subsections lead to a new intuitive understanding of the

hatchet planimeter formula (1), which we describe in this subsection. Loosely speaking,
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Tire Tracks and Integrable Curve Evolution 27

Fig. 13. (a) diam($) = O(ε), diam(γ ) = O(ε2). (b) $ is O(ε2)–close to $S. (c) As ε decreases to

ε1 ≪ ε, γ becomes indistinguishable from a point, and thus $S looks indistinguishable from $,

illustrating (34).

the angle by which the planimeter rotates is approximated by the solid angle of a certain

cone, as explained next.

We consider a planar curve $ ⊂ R2 of small diameter diam($) = O(ε), area

A = O(ε2), and fixed bicycle length ℓ = 1—this assumption is equivalent to taking a long

bike of size ℓ = 1/ε for a fixed $.

With $ so scaled, the hatchet planimeter formula (1), expressing the area A

bounded by $ in terms of the rotation angle θ of the planimeter, becomes

A = θ + O(ε3). (33)

We now “lift” our point of view above $ by considering the plane R2 containing

$ as the horizonal plane z = 0 in R3. The monodromy of $ then becomes a Möbius

transformation M : S2 → S2, commuting with the reflection about the horizontal plane

and conjugate to a rigid rotation about a vertical axis, with a pair of fixed points,

symmetrically situated on opposite sides of the horizontal equator S1 ⊂ S2. Consider

the closed rear track γ corresponding to one of those fixed point; see Figure 13(a).

Let us parallel transport every bike segment RF tangent to γ by moving the

tangency point R to a chosen point O ∈ γ . The translated segments form a cone K with

vertex at O and the translated endpoints F form a curve $S on the unit sphere S2 centered

at O, enclosing a spherical area +, equal to the solid angle subtended by K at O; see

Figure 13(b).

The Berry’s phase formula (Corollary 2.19) states that M (the monodromy of $)

is conjugate to a rigid rotation of S2 by the angle + (note that Lγ = 0 in (25) for a planar

$ with an elliptic M). Furthermore, Theorem 5 states that M is O(ε3)–close to a rigid
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rotation. Combining the last two statements, we conclude that the rotation angle θ of

the planimeter in formula (33) is O(ε3)–close to the solid angle +. In other words, formula

(33) is equivalent to the statement

A = + + O(ε3). (34)

Formula (34) suggests a “bird’s eye view” interpretation of the planimeter

formula (33): a bird standing at a point O, at height 1 above a planar curve $ of diameter

O(ε), estimates its area A, with O(ε3)–accuracy, by the solid angle + subtended at O by

the O(ε2)–close curve $S.

To justify the O(ε2)–closeness of $ and $S, we argue as follows. First, we observe

that diam(γ ) = O(ε2) as Figure 13(a) illustrates; indeed, the tangent segments RF to γ

form angles π/2 + O(ε) with the plane of $, and thus

γ̇ = (v · r)r = ∥v∥ cos(π/2 + O(ε)) = O(ε2),

since ∥v∥ = ∥$̇∥ = O(ε). When constructing $S we therefore moved each point F ∈ $ by

O(ε2), which shows that $S and $ are O(ε2)–close to each other.

This now implies (34) as follows: first, projecting $S onto the horizontal plane,

the area of the resulting planar region is O(ε3)–close to the spherical area + enclosed by

$S; since the projected curve is O(ε2)–close to $, and both have length O(ε), their areas

differ by O(ε3). This explains (34).

2.10 Bicycling and hyperbolic rolling

The main purpose of this section is to elaborate on the equivalence mentioned before

(Remark 2.12): the bicycle equation (4), for ∥r∥ < 1, also describes the rolling without

sliding and twisting of the hyperbolic n-ball on the Euclidean n-space Rn. A precise

statement is given in Theorem 6 below. We precede this statement by a discussion of

rolling of the Euclidean sphere.

We feel that this material is not common knowledge and not easy to gather

from the literature, so we begin with an elementary exposition of rolling a ball on the

plane, before moving on to the rolling of hyperbolic n-space on Rn. For a more abstract

“intrinsic” treatment of rolling we recommend [10] (section 4.4), as well as [9]. For n = 2,

the material here is closely related to the “stargazing” interpretation of the bicycling (4)

as it appears in Section 3 of [18].
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Fig. 14. A ball rolling without slipping and twisting.

Consider a rubber ball lying on top of the flat rough surface of a table, so that

the ball can roll on the table, but not slide; that is, as the ball moves, at each moment

the point of the ball in contact with the table has zero velocity. We paint a straight line

segment $ on the table, position the ball at one end of $, and roll it along until it reaches

the other end. As we do so, the paint, which is still wet, marks a curve $̃ on the surface

of the ball. See Figure 14.

Since we are rolling without sliding, $̃ and $ have the same length. Furthermore,

if we are careful not to spin the ball about the vertical axis through its contact point

with the table as it rolls, $̃ is in fact a geodesic segment (an arc of a great circle). Note

also that as a result of the rolling, the ball is translated along $ and rotated about the

horizontal axis passing through the center of the ball and perpendicular to the direction

of $. Note also that due to the no-spin condition, a parallel field of vectors along $

leaves a “track” of corresponding vectors on $̃ which form a parallel field with respect

to parallel transport on the sphere.

We can of course roll the ball along a more general curve $ drawn on the table,

in which case the no-slide and no-spin conditions (also called “no-slip” and “no-twist”)

imply that the curve $̃ traced on the ball has the same length and the same geodesic

curvature as $ at the corresponding points. The change of orientation of the ball as a

result of the rolling is an element g ∈ SO3, called the rolling monodromy of $.

For example, if $ is a circle of radius R, then $̃ is an arc of a circle of latitude

on the sphere, of length 2πR and geodesic curvature 1/R, from which one can easily

determine $̃, as well as g (given the radius of the rolling ball).

Let us now formulate the above more precisely and generally. Consider the n-

sphere of radius ℓ,

Sn
ℓ = {(x1, . . . , xn+1) ∈ Rn+1|(x1)2 + . . . + (xn+1)2 = ℓ2},
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rolling along a smoothly parametrized curve $(t) in Rn = {xn+1 = 0} ⊂ Rn+1. The rolling

motion is given by a time-dependent family of rigid motions ϕ(t) : Rn+1 → Rn+1, so that

ϕ(t)(Sn
ℓ ) is positioned in the upper half space {xn+1 ≥ 0}, tangent to Rn at $(t). Then ϕ(t)

can be written as

ϕ(t)(x) = g(t)x + $(t) + ℓen+1, g(0) = I,

where g(t) ∈ SOn+1 = Iso+(Sn
ℓ ) is the “rolling monodromy”, describing the rotation of

the moving sphere at time t with respect to its initial position at t = 0. Let

$̃(t) = ϕ(t)−1($(t)) = −ℓ[g(t)]−1en+1 ∈ Sn
ℓ ,

the “body” curve of contact points. The (space) derivative of ϕ(t) is a linear isometry

T$̃(t)S
n
ℓ → T$(t)Rn, given by g(t), satisfying the following two rolling conditions:

(1) No-slip: g(t) ˙̃$(t) = $̇(t);

(2) No-twist: if ξ̃ is a vector field tangent to Sn
ℓ and parallel along $̃, then g(t)ξ̃(t)

is parallel along $.

Remark 2.24. It can be easily shown that the no-slip condition (1) is equivalent to

the vanishing of the Killing field v(t) := ϕ̇(t)[ϕ(t)]−1 at $(t) (“the velocity of the contact

point of the rolling body with Rn is equal to zero”). Thus, for n = 2, v(t) is the velocity

vector field of rotations about an instantaneous axis passing through the contact point

$(t) (the “angular velocity” axis). Furthermore, for n = 2, the no-twist condition (2)

is equivalent to the instantaneous rotation axis lying in R2 and perpendicular to $̇.

It is also equivalent to the equality of the geodesic curvatures of $ and $̃ at the

corresponding points.

Proposition 2.25. The monodromy g(t) ∈ SOn+1 of rolling Sn
ℓ along a parametrized

curve $(t) in Rn satisfies

ġ = 1
ℓ

(
0n v

−vt 0

)

g, g(0) = I, v = $̇. (35)

Proof. For the sake of brevity we omit the explicit t-dependence, writing g = g(t), etc.
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Let A = ġg−1 ∈ son+1. The statement is then that the no-slip and no-twist

conditions are equivalent to (1): Aen+1 = $̇/ℓ and (2): if ξ ⊥ en+1 then Aξ ≡ 0 (mod en+1)

(i.e., Aξ is a multiple of en+1). We now prove (1) and (2).

(1) g$̃ = −ℓen+1 implies 0 = ġ$̃ + g ˙̃$ = −ℓAen+1 + g ˙̃$. Hence the no-slip condition,

g ˙̃$ = $̇, is equivalent to Aen+1 = $̇/ℓ.

(2) Suppose ξ̃ is parallel along $̃. Then ˙̃ξ ≡ 0 (mod $̃), hence g ˙̃ξ ≡ 0 (mod en+1). Let

ξ = gξ̃ . Then

ξ̇ = ġξ̃ + g ˙̃ξ = Aξ + g ˙̃ξ ≡ Aξ (mod en+1).

But ξ ⊥ en+1, hence ξ̇ ⊥ en+1 and ξ̇ = Aξ . It follows that if A has the form given in

formula (35), then Aξ = 0, hence ξ̇ = 0, that is, ξ is parallel.

Conversely, given a vector ξ0 ⊥ en+1 tangent to Rn at $(t0), we let ξ̃0 = [g(t0)]−1ξ0

and extend it to a parallel vector field ξ̃ along $̃. Assuming the no-twist condition, ξ := gξ̃

is parallel. As before, it implies that 0 = ξ̇ ≡ Aξ (mod en+1). In particular, A(t0)ξ0 ≡
0 (mod en+1), as claimed. !

Next, recall from Section 2.5 the hyperboloid model for hyperbolic n-space of

curvature −1/ℓ2,

Hn
ℓ = {x ∈ Rn,1|⟨x, x⟩ = −ℓ2, xn+1 > 0}.

Given a curve $ in Rn = {xn+1 = 0} ⊂ Rn,1, a rolling of Hn
ℓ along $ consists of a t-

dependent family of rigid motions ϕ(t) : Rn,1 → Rn,1 (orientation preserving isometries),

so that ϕ(t)(Hn
ℓ ) is positioned in the upper half space {xn+1 ≥ 0}, tangent to Rn at $(t).

Such ϕ(t) can be written as

ϕ(t)(x) = g(t)x + $(t) − ℓen+1, g(0) = I,

where g(t) ∈ SO+
n,1 = Iso+(Hn

ℓ ) is the “rolling monodromy”, describing the rotation of

the moving hyperbolic n-space at time t with respect to its initial position at t = 0.

Furthermore, g(t) is required to satisfy the same no-slip and no-twist conditions that

were given in the case of rolling Sn
ℓ .

Theorem 6. The monodromy g(t) ∈ SOn,1 of rolling Hn
ℓ along a parametrized curve $(t)

in Rn satisfies

ġ = −1
ℓ

(
0n v

vt 0

)

g, g(0) = I, v = $̇. (36)
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Thus, g(t) coincides with the bicycling ℓ-monodromy of $ (see Theorem 3).

The proof is almost identical to the above proof of Proposition 2.25 and is

omitted.

Remark 2.26. Embedding Rn and Hn
ℓ in Rn,1 facilitates intuition and calculations but

is not essential, since the no-slip and no-twist conditions are intrinsic. These conditions

thus apply to the rolling of Hn
ℓ along an arbitrary Riemannian n-manifold M, defining a

principal SOn,1-connection on M, whose associated parallel transport can be interpreted

as either the monodromy of rolling Hn
ℓ along M or the monodromy of ℓ-bicycling on M.

3 Bicycle Correspondence, the Filament Equation, and Integrable Systems

3.1 Bicycle correspondence

We start by recalling the definition of the bicycle correspondence.

Definition 3.1. Let ℓ > 0. Two smoothly parameterized curves $1, $2 in Rn are in ℓ-

bicycle correspondence if, for all t,

(i) the connecting segment $1(t)$2(t) has a fixed length ℓ, and

(ii) the midpoint curve ($1(t) + $2(t))/2 is tangent to the connecting segment.

See Figure 3 of the Introduction. Condition (ii) can be expressed by the following

formula:

($1(t) − $2(t)) ∧ ($̇1(t) + $̇2(t)) = 0. (37)

Here is a useful reformulation. See Figure 15.

Lemma 3.2. Two parameterized curves $1, $2 in Rn are in bicycle correspondence (for

some ℓ) if and only if, for all t, the vector $̇2(t) is the reflection of $̇1(t) about the

connecting line segment $1(t)$2(t), followed by parallel translation from $1(t) to $2(t),

$̇2(t) = −$̇1(t) + 2
(
$̇1(t) · r(t)

)
r(t), where r(t) = $1(t) − $2(t)

∥$1(t) − $2(t)∥
. (38)

Proof. Condition (i) of Definition 3.1 is equivalent to the equality of the orthogonal

projections of $̇1(t) and $̇2(t) onto r(t). Condition (ii), by formula (37), is then that the

orthogonal components sum up to 0. !

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny087/4998816 by Pennsylvania State U

niversity user on 15 January 2019



Tire Tracks and Integrable Curve Evolution 33

Fig. 15. ℓ-bicycle correspondence.

Fig. 16. (a) The definition of a Darboux Butterfly; (b) Degenerate butterflies.

Corollary 3.3. Bicycle correspondence is arc-length preserving.

Proof. This follows from Lemma 3.2 and the fact that reflection and parallel transla-

tion are isometries. !

The main result of this section is that bicycle correspondence preserves the

bicycle monodromy (Theorem 7). This result is not new: in [47], it is established for

the discrete version of the bicycle correspondence, defined for polygons in Rn, and in

the smooth case, it follows by taking limit. Here we give a different proof whose idea is

to conjugate the bicycle monodromies along the corresponding curves using “Darboux

Butterflies”, which we now introduce.

Definition 3.4. A Darboux Butterfly in Rn is the result of “folding” a parallelogram

about one of its diagonals; more precisely, it is an ordered quadruple ABCD of four

distinct points in Rn, such that D is the reflection of the point A−B+C about the line AC.

See Figure 16.

Remark 3.5. The above definition applies also to “degenerate” butterflies ABCD, where

one or two pairs of points coincide, as long as A ̸= C or B ̸= D, so one can apply the

definition, or the equivalent one: A is the reflection of B − C + D about BD.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny087/4998816 by Pennsylvania State U

niversity user on 15 January 2019



34 G. Bor et al.

Here are some immediate consequences of Definition 3.4:

Lemma 3.6.

(i) A Darboux Butterfly is a planar quadrilateral.

(ii) The butterfly property is invariant under cyclic permutation and order

reversing of its vertices. Namely, if ABCD is a Darboux Butterfly, then so

are BCDA and DCBA.

(iii) Any triple of points ABC in Rn with A ̸= C can be completed uniquely to a

Darboux Butterfly ABCD (possibly degenerate; see Remark 3.5).

Another property of Darboux Butterflies is the following infinitesimal version of

the “Butterfly Lemma” of [47]. To formulate it, we first define for a given segment UV in

Rn the glide reflection GUV : Rn → Rn as the composition of the reflection about the line

through UV, followed by parallel translation through the vector V − U. For example, in

Figure 15, $̇2(t) is the image of $̇1(t) under G$1(t)$2(t).

Lemma 3.7. For any Darboux Butterfly ABCD, one has

GDA ◦ GCD ◦ GBC ◦ GAB = Id.

Proof. The linear part of the isometry in question is the composition of four

reflections. Decompose Rn into the direct sum of the plane of the butterfly, translated to

the origin, and its orthogonal complement. In the orthogonal complement each reflection

acts by − 1, hence the composition of the four reflections acts trivially.

In the plane of the butterfly, the product of the reflections about two successive

edges is a rotation by twice the angle between the edges; the product of reflections

about the next pair of successive edges is then a rotation by the same angle in opposite

direction.

It follows that the linear part of the isometry in question is trivial. Thus it is a

parallel translation. But A is a fixed point, hence it is the identity. !

The next statement is a version of “Bianchi permutability” [40], proved in [47] for

a polygonal version of the bicycle correspondence.

Proposition 3.8. Let ℓ1, ℓ2 > 0 with ℓ1 ̸= ℓ2 and let A(t), B(t), C(t) be three parameterized

curves in Rn such that (A, B) and (B, C) are in ℓ1- and ℓ2-bicycle correspondences, respec-
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Fig. 17. Bianchi permutability.

tively. Complete A(t)B(t)C(t) to a Darboux Butterfly A(t)B(t)C(t)D(t) (the non-degeneracy

assumption ℓ1 ̸= ℓ2 assures that A(t) ̸= C(t) so Lemma 3.6(iii) applies). Then (A, D) and

(C, D) are in ℓ2- and ℓ1-bicycle correspondence, respectively. See Figure 17.

Proof. By Lemma 3.2, Ȧ = GBAḂ, Ċ = GBCḂ, and we need to show that Ḋ = GADȦ =
GCDĊ.

Now ∥A − D∥ = ℓ2 and ∥C − D∥ = ℓ1 imply the “non-stretching condition”: the

orthogonal projections of Ḋ onto AD and CD coincide with the orthogonal projections of

Ȧ and Ċ onto AD and CD, respectively. If the butterfly is noncollinear then AD, CD are

linearly independent, hence Ḋ is determined uniquely by the non-stretching condition.

On the other hand, using Lemma 3.7, we have

GADȦ = GADGBAḂ = GCDGBCḂ = GCDĊ,

and this vector clearly satisfies the “non-stretching condition”. Hence Ḋ = GADȦ = GCDĊ.

For a collinear butterfly, the result follows by continuity from the noncollinear case. !

The next result shows that the flows of the bicycle equation along curves in

bicycle correspondence are conjugate.

Lemma 3.9. Let $1, $2 be two parameterized curves in Rn in 2ℓ-bicycle correspondence.

For each λ ̸= ℓ, let 1λ(t) : Sn−1 → Sn−1 be the map r1 '→ r2 defined by completing

$1(t) + 2λr1, $1(t), $2(t) to a Darboux Butterfly

$1(t) + 2λr1, $1(t), $2(t), $2(t) + 2λr2
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Fig. 18. Two closed curves in 2ℓ-bicycle correspondence, with the Darboux Butterfly conjugating

their λ-bicycle flows.

Fig. 19.. Proving that 1λ is a Möbius transformation.

(see Figure 18). Then 1λ(t) is a Möbius transformation (possibly orientation reversing),

conjugating the λ-bicycle flows along $1, $2. That is, if r1(t) satisfies λṙ1 = −v1+(v1·r1)r1

then r2(t) := 1λ(t)r1(t) satisfies λṙ2 = −v2 + (v2 · r2)r2, where v1 = $̇1, v2 = $̇2.

Proof. If r1(t) solves the λ-bicycle equation along $1 then $1 + 2λr1 is in 2λ-bicycle

correspondence with $1. By Bianchi permutability (Proposition 3.8), $2 + 2λr2 is in 2λ-

bicycle correspondence with $2, hence r2(t) is a solution to the λ-bicycle equation along

$2.

The proof that 1λ(t) is a Möbius transformation was given in the proof of

Theorem 1 of [47]. Here we present an alternative proof for n = 2, that is, 1λ(t) : S1 → S1,

where S1 ⊂ C. We denote the image of z by w, where |z| = |w| = 1, see Figure 19.

Expanding |2ℓ + 2λw − 2λz|2 = (2ℓ)2, we obtain

Re
(

w(λz̄ − ℓ) + (ℓz̄ − λ)

)
= 0. (39)

Geometrically, it is clear that given any z ̸= ± 1 on the unit circle, there are

precisely two solutions w to (39), and that one of them is w = z (corresponding to the

parallelogram, rather than the butterfly). The other (algebraically) obvious solution is
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given simply by

w(λz̄ − ℓ) + (ℓz̄ − λ) = 0,

or

w = −ℓz̄ − λ

λz̄ − ℓ
.

The last formula shows that z '→ w is a reflection z '→ z̄, followed by a Möbius

transformation, the projectivization of

(
ℓ −λ

−λ ℓ

)

∈ GL2(R), as claimed. !

Theorem 7. If $1, $2 are two closed curves in Rn in 2ℓ-bicycle correspondence then, for

all λ > 0, their λ-bicycle monodromies are conjugate elements of SO+
n,1.

Proof. For λ ̸= ℓ this follows from the last lemma. By continuity, it then follows also

for λ = ℓ. !

This theorem provides integrals of the bicycle correspondence: a conjugacy-

invariant function on the Möbius group, considered as a function of λ, is such an

integral. Individual integrals can be obtained by expanding such a function in a series

in λ. We call such integrals of the bicycle correspondence the monodromy integrals.

For a discussion of symplectic properties and complete integrability of the

bicycle correspondence, see [48].

3.2 The bicycle equation and the filament equation

In this subsection we describe a relation between the bicycle equation (4) in R3 and the

filament equation (also called the localized induction equation, among several other

names). The later is an evolution equation on arc length parameterized curves $(t)

in R3,

$′ = $̇ × $̈,

where prime ′ denotes time derivative and dot stands for derivative with respect to arc

length t along $ (this unconventional choice is forced by the prior role of t in this paper).

In other words, the point $(t) moves in the binormal direction with velocity equal to the

curvature κ(t). This equation provides a simplified model of the motion of a vortex line

in ideal fluid. Here we are concerned with closed curves.

This infinite-dimensional system is completely integrable in the following sense

(see [29, 30]). It is a Hamiltonian system with respect to the so-called Marsden–
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Weinstein symplectic structure on the space of arc length parameterized curves, the

Hamiltonian function being the perimeter of the curve. We do not use this symplectic

structure in the present paper, so we simply refer to [39] and [3], p. 326 and p. 332, for

its definition and main properties.

The filament equation has a hierarchy of Poisson commuting integrals F1, F2, . . .

that starts with

∫
1 dt,

∫
τ dt,

∫
κ2 dt,

∫
κ2τ dt,

∫ (
κ̇2 + κ2τ2 − 1

4
κ4

)
dt, . . . , (40)

where, as before, τ is the torsion and κ is the curvature of $. One also has a hierarchy

of vector fields x0, x1, x2, . . . along $, that starts with

− v, κb,
κ2

2
v + κ̇n + κτb, κ2τv + (2κ̇τ + κτ̇ )n +

(
κτ2 − κ̈ − κ3

2

)
b, . . . , (41)

where, as before, v, n, b is the Frenet frame along $. For each i ≥ 1, xi defines a

Hamiltonian vector field on the space of arc length parameterized curves in R3, whose

Hamiltonian with respect to the Marsden–Weinstein structure is Fi.

The vector fields xi satisfy the relations

ẋi = v × xi+1, i = 0, 1, 2, . . . . (42)

Following [29], [19], consider the generating function x :=
∑

j≥0 εjxj, where ε is a formal

parameter. Then the relations (42) can be compactly encoded in the equation

εẋ = v × x, v = $̇. (43)

We impose an additional normalization condition x · x = 1; the vector fields xi are then

uniquely defined by (43) and x0 = −v (see [29]).

Remark 3.10. The series x =
∑

j≥0 εjxj is a formal periodic solution of the differential

equation (43) on the sphere. We do not claim that it converges and represents a genuine

periodic solution for any ε ̸= 0.

Now let us compare (43) with the bicycle equation (11) in R3:

ℓṙ = (v × r) × r, r · r = 1, v = $̇. (44)
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Tire Tracks and Integrable Curve Evolution 39

Each of the right hand sides of the last two displayed equations defines a time-

dependent vector field on S2, determined by v(t) = $̇(t). For equation (43), it is the

velocity field of rotations about the axis Rv with angular velocity ∥v∥.

Proposition 3.11. The vector field on the right hand side of (43) is obtained from that

on the right-hand side of (44) by an anti-clockwise rotation by 90 degrees.

The proof is straightforward from the equations.

Consequently, if we use a stereographic projection to put a complex coordinate

on S2, the resulting Riccati equations (in an inertial frame) differ by multiplication of

their right-hand sides by i:

ℓż = 1
2

(
−q + 2v1z + q̄z2

)
, (Bicycle)

εẇ = i
2

(
−q + 2v1w + q̄w2

)
, (Filament)

where

$̇ = v = (v1, v2, v3), q = v2 + iv3.

In other words, the filament equation (43) is the equation of a bicycle with “imaginary

length” ℓ = −iε.

We also have a filament analog of Proposition 2.9: we project the curve x(t)

stereographically from −v (the south pole in Figure 20) on the n, b plane, equipped with

complex coordinate W = (X2 + iX3)/(1+X1), where x = X1v+X2n+X3b, and express (43)

as a differential equation on W.

Fig. 20. The vector field of the filament equation (43) (right) is obtained from that of the bicycle

equation (44) (left) by a 90◦ anticlockwise rotation; the fixed points (“north” and “south poles”) of

both vector fields are in the direction of ±v.
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Proposition 3.12. Equation (43) is equivalent to the Riccati equation

Ẇ = i
(

1
ε

− τ

)
W − κ

2
(1 + W2). (45)

The proof is a direct calculation that we do not reproduce here.

Remark 3.13. Equation (43) is a particular case of the equation ẋ = +(t)x, where + is

a time-dependent skew-symmetric 3 × 3 matrix, studied in [32]. Its monodromy is the

orthogonal transformation that relates the initial and terminal unit tangent vectors of

the spherical curve b(t) whose geodesic curvature, in our case, equals

τ (t) + 1
ε

κ(t)
.

Comparing the filament Riccati equation (45) to the bicycle Ricatti equation (15)

Ż =
(

1
ℓ

− iτ
)

Z − κ

2
(1 + Z2), (46)

we see that they are almost the same.

Corollary 3.14. The filament Riccati equation (45) is obtained from the bicycle Ricatti

equation (46) by replacing the variable Z with W and ℓ with −iε.

We now come to the main point of this section. Let us describe first the idea

before proceeding to the technical details. Let us fix a closed smooth curve $ in R3.

The last corollary suggests a relation between the filament integrals Fi of equation

(40) and the bicycle equation (44). It is natural to seek this relation by looking at the

conjugacy class of the bicycle monodromy Mℓ ∈ PSL2(C). The latter has (generically)

two fixed points in S2, one stable and one unstable, and the derivative at one of them

determines the conjugacy class of Mℓ (the derivatives are the reciprocal of each other and

each is the square of the corresponding eigenvalue of a matrix in SL2(C) representing

Mℓ). We denote by λ(ℓ), for ℓ small enough, the derivative of Mℓ at the unstable fixed

point. We will show that ℓ ln λ(ℓ) has a Taylor series at ℓ = 0, that is, is infinitely

differentiable (we do not claim analyticity). The Taylor coefficients of ℓ ln λ(ℓ) at 0 are

the monodromy integrals of $. They share with Fi the property of being invariant

under bicycle correspondence. By linearizing the Riccati bicycle equation (46) around

the unstable periodic solution, we are able to express the monodromy integrals, like the
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filament invariants Fi, as integrals along $ of certain differential polynomials in κ, τ .

We can then check that the first few monodromy integrals coincide with the filament

invariants Fi, up to index shift and multiplicative constants. This suggests a conjectured

relation between the filament integrals and the monodromy invariants.

The following proposition is the main technical tool for implementing the above

plan.

Proposition 3.15. Consider a closed smooth curve $ in R3. Then there exists ℓ0 > 0

such that for all ℓ ∈ (0, ℓ0) the associated Ricatti equation (46) has a unique unstable

periodic solution Z(t, ℓ), tending uniformly, with all its derivatives, to the zero function,

as ℓ → 0. Furthermore, extended to ℓ = 0 via Z(t, 0) = 0, Z(t, ℓ) is infinitely differentiable

in R × [0, ℓ0).

We defer the proof of this proposition to Appendix B.

Theorem 8. Let $ be a closed smooth curve in R3 and denote by λ(ℓ) ∈ C the derivative

of the ℓ-bicycle monodromy at its unstable fixed point, for small enough ℓ (as per

Proposition 3.15). Then ℓ ln λ(ℓ) extends to an infinitely differentiable function in [0, ℓ0)

for some ℓ0 > 0. The Taylor coefficients at 0, that is, the numbers

In := 1
n!

(∂ℓ)
n∣∣

ℓ=0

[
ℓ ln λ(ℓ)

]
, n ≥ 0,

are invariants of the bicycle correspondence and can be determined recursively as

integrals along $ of polynomials in κ, τ and their derivatives.

Proof. We linearize (46) at the unstable periodic solution Z(t, ℓ), writing this lineariza-

tion in the form

U̇
U

= 1
ℓ

− iτ − κZ.

Integrating both sides over a period and multiplying the result by ℓ give

ℓ ln λ(ℓ) =
∫

(1 − iℓτ − ℓκZ) dt. (47)

By Proposition 3.15, this expression is C∞ in [0, ℓ0) for some ℓ0 > 0. To compute the

derivatives of the last equation with respect to ℓ at ℓ = 0, we need to calculate the

derivatives

Zn := 1
n!

(∂ℓ)
n∣∣

ℓ=0Z, n ≥ 0.
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To find Zn, we first multiply the bicycle Riccati (46) by ℓ, obtaining

ℓŻ = Z − ℓf , where f = iτZ + κ

2
(1 + Z2), (48)

then differentiate n times at ℓ = 0 (an operation justified by Proposition 3.15), obtaining,

after some manipulation, the recursion relation

Zn = Żn−1 + 1
(n − 1)!

∂n−1
ℓ

∣∣∣
ℓ=0

f .

Equivalently, and perhaps easier for calculations, one expands Z as a formal

power series in ℓ

Z = Z0 + ℓZ1 + ℓ2Z2 + . . .

substitutes in (48), and equates the terms having the same degree in ℓ.

In this way, one consecutively finds

Z0 = 0, Z1 = κ

2
, Z2 = κ̇

2
+ i

τκ

2
, Z3 =

(
κ̈

2
+ κ3

8
− τ2κ

2

)
+ i

(
τ̇ κ

2
+ τ κ̇

)
, . . .

and so on, and then

I0 =
∫

1 dt, I1 = −i
∫

τ dt, I2 = −1
2

∫
κ2 dt, I3 = − i

2

∫
κ2τ dt,

I4 = −
∫ (

κκ̈

2
− κ2τ2

2
+ κ4

8

)
dt, . . .

(49)

and so on. !

We make two observations:

1. The integrals In are real for even n and imaginary for odd n.

2. Up to multiplicative constants and index shift, the integrals (49) coincide

with the integrals (40) of the filament equation.

We will not attempt to justify these observations formally here and leave their

validity as conjectures, to be studied in future work.
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Remark 3.16. One can easily verify these observations by explicit calculation for the

first several cases. For example, we can see immediately from formulas (40) and (49) that

I0 = F1, I1 = −iF2, I2 = −1
2

F3, I3 = − i
2

F4.

As for I4, we make use of the presence of total derivatives,

I4 − 1
2

F5 = −1
2

∫ (
κκ̈ + κ̇2)

dt = −1
2

∫
d (κκ̇)

dt
dt = 0,

concluding that I4 = 1
2F5. We have tested in a similar fashion observations 1 and 2 for

at least ten additional terms.

A heuristic argument for observation 1 is as follows: Corollary 3.14 suggests a

Laurent expansion ℓ ln λ(ℓ) =
∑

Inℓn in the complex ℓ-plane. For imaginary ℓ, that is,

ℓ = −iε, the monodromy is an orthogonal transformation (since the linear system (43)

has antisymmetric coefficient matrix), hence ln λ is imaginary and ℓ ln λ(ℓ) =
∑

(−i)nInεk

is real. Thus In is real for even n, imaginary for odd n.

Remark 3.17. That the bicycle correspondence preserves the integrals (40) of the

filament equation is proved in [48].

3.3 Wegner’s curves, buckled rings, and solitons of the planar filament equation

In this section we show that the Zindler curves constructed by Wegner in [50]–[55] are

buckled rings. The latter are also solitons of the planar filament equation (specified later

in this section), see [29].

As we mentioned in the introduction, a (planar) Bernoulli elastica is an

extremum of the total squared curvature (bending energy) among curves of fixed length.

That is, if $(t) is an arc length parameterized curve with curvature κ(t), one is looking

for extrema of
∫
$ κ2(t) dt, subject to the constraint that the perimeter is fixed. The

extremal curves satisfy the Euler–Lagrange equation

κ̈ + 1
2

κ3 + λκ = 0,

where λ is a Lagrange multiplier; see, for example, [44].

A buckled ring is an extremum of the total squared curvature functional, subject

to two constraints: both the perimeter and the area are being fixed. Buckled rings have

been extensively studied, starting with Lévy [36], Halphen [24], and Greenhill [20] in the
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19th century; see [1, 14] for recent works. The area constraint gives rise to a second

Lagrange multiplier, µ, in the Euler–Lagrange equation of a buckled ring:

κ̈ + 1
2

κ3 + λκ = µ. (50)

Let us turn attention to Wegner’s curves, which come in two flavors, the linear

(non-closed) and the circular (closed) ones. The linear curves are the curves whose

curvature is proportional to the distance to the x-axis. They are the graphs y = f (x),

in Cartesian coordinates, where f satisfies the differential equation

1
√

1 + f 2
x

= af 2 + b (51)

with parameters a, b. The circular curves are the curves whose curvature is proportional

to the distance to the origin, and are given by the graphs r = r(ψ), in polar coordinates,

satisfying the differential equation

1
√

r2 + r2
ψ

= ar2 + b + c
r2 (52)

with parameters a, b, c.

Theorem 9. Wegner’s curves are buckled rings: (50) holds for the linear Wegner curves

with λ = 2ab, µ = 0, and for the circular Wegner curves with λ = 8ac − 2b2, µ = 8a.

Proof. Consider the linear case first. Let x(t), y(t) be an arc length parameterization of

this curve, θ(t) be its direction, and κ(t) its curvature. Then

ẋ = cos θ , ẏ = sin θ , θ̇ = κ. (53)

The left hand side of (51) is ẋ, and we rewrite this equation as

ẋ = ay2 + b. (54)

We claim that κ = −2ay. Indeed, differentiate the first equation of (53) and (54),

−θ̇ sin θ = ẍ = 2ayẏ,
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and use the second and third equations of (53),

−κ sin θ = 2ay sin θ ,

implying the claim.

Now using κ = −2ay, (53) and (54), we find that

κ̈ + 1
2

κ3 = 4a2y(ay2 + b) − 4a3y3 = 4a2by = −2abκ,

as needed.

The argument in the circular case is similar. Let r(t), ψ(t) be the polar coordi-

nates of the curve in an arc length parameterization and α = θ − ψ the angle between

the tangent to the curve and the radial direction. Then

ṙ = cos α, rψ̇ = sin α, θ̇ = κ = ψ̇ + α̇. (55)

The left hand side of (52) is ψ̇ , hence we can rewrite this equation as

ψ̇ = ar2 + b + c
r2 . (56)

We claim that κ = 4ar2 + 2b. Indeed, from (55) and (56), we get

sin α = rψ̇ = ar3 + br + c
r

,

hence

(κ − ψ̇)ṙ = α̇ cos α = (sin α)̇ = ṙ
(
3ar2 + b − c

r2

)
.

Thus

κ = ψ̇ + 3ar2 + b − c
r2 =

(
ar2 + b + c

r2

)
+ 3ar2 + b − c

r2 = 4ar2 + 2b,

as claimed.

Now using κ = 4ar2 + 2b, (55), and (56), we find

κ̈ + 1
2

κ3 = 8a[1 − κ(ar4 + br2 + c)] + 1
2

(4ar2 + 2b)3 =

= 4(2a + b3 − 4abc) + 8a(b2 − 4ac)r2 = 2(b2 − 4ac)κ + 8a,

as needed. !
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It is known that buckled rings are solitons of the planar filament equation. Let

us review this material.

Let $(t) be a smooth planar arc length parameterized curve, (v, n) its Frenet

frame and κ its curvature. The planar filament equation is the evolution equation

$′ = κ2

2
v + κ̇n,

obtained from the vector field x2 in the filament hierarchy (41) by restricting to planar

curves with τ = 0. The planar filament equation has infinitely many integrals of motion,

namely, the odd-numbered ones in the sequence (40), restricting again to τ = 0, see [31].

The planar filament equation is equivalent to the modified Korteweg–de Vries equation,

in the same way as the filament equation is equivalent to the nonlinear Schrödinger

equation [31].

By solitons of the planar filament equation we mean the curves that evolve under

this flow by isometries and a parameter shift. The next proposition is not new (see, e.g.,

[29]); we include its proof here for completeness.

Proposition 3.18. The buckled rings are solitons of the planar filament equation.

Proof. A planar curve evolves by isometries if and only if its curvature remains

unchanged. Let $(t) be an arc length parameterized planar curve and δ(t) a vector field

along $, defining its variation. Denote by κ ′ the directional derivative of κ with respect to

δ. The change in κ due to parameter shift is κ̇ := dκ
dt . It follows that the soliton condition,

requiring $ to evolve under δ by isometries and parameter shift, is equivalent to the

condition that κ satisfies the equation κ ′ + λκ̇ = 0 for some real constant λ.

Now a straightforward calculation shows that, for a general $ and δ,

κ ′ = δ̈ · n − 2κ δ̇ · v. (57)

(Sketch: calculate δ̈ = $̈′ ≡ (2u′κ +κ ′)n (mod v), where u = |$̇|, so that $̇ = uv. It follows

that δ̈ · n = 2u′κ + κ ′. Next, calculate δ̇ = $̇′ ≡ u′v (mod n), hence u′ = δ̇ · v, from which

(57) follows.)

In our case, δ = κ2

2 v + κ̇n, which implies, again by a straightforward calculation,

that

δ̈ · n = d
dt

(
κ̈ + 1

2
κ3

)
, δ̇ · v = 0.
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(The last equation means that the flow defined by δ on the space of parametrized curves

is arc length preserving.)

It follows from the last two displayed equations that the soliton condition on $

for the planar filament equation is

κ ′ + λκ̇ = d
dt

(
κ̈ + 1

2
κ3 + λκ

)
= 0,

or

κ̈ + 1
2

κ3 + λκ = µ,

that is, the Euler–Lagrange equation (50). !

We conclude that Wegner’s curves are solitons of the planar filament equation.

4 Case Study: Multiple Circles

In this section we study some interesting and nontrivial curves in bicycle correspon-

dence with a circle.

4.1 Definition of the curves $k,n

Denote by nS1 the n-fold circle, parameterized by t '→ eit ∈ C, 0 ≤ t ≤ 2πn. Recall that

the monodromy of a closed parametrized planar curve is a conjugacy class of an element

of PSL2(R); these elements are divided into hyperbolic, parabolic, elliptic, and trivial,

according to the number of fixed points in S1 ≃ RP1 (2, 1, 0, ∞, respectively).

Proposition 4.1. Let ℓ > 0. Then the ℓ-bicycle monodromy of nS1, n ≥ 1, is

• hyperbolic for ℓ < 1;

• parabolic for ℓ = 1;

• elliptic for ℓ > 1, except for the n − 1 values

ℓk,n = 1
/√

1 − (k/n)2, k = 1, 2, . . . , n − 1,

for which the monodromy is trivial.

Proof. The ℓ-monodromy of nS1 is the n-th power of the ℓ-monodromy of the (simple)

circle S1. The latter is easily found by direct calculation to be hyperbolic for 0 < ℓ < 1,
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parabolic for ℓ = 1, and elliptic for ℓ > 1. The n-th power of hyperbolic or parabolic

element is hyperbolic or parabolic, respectively.

An elliptic element is conjugate to a rotation by some angle α, hence its n-th

power is trivial if and only if α is a multiple of 2π/n. On the other hand, by

Corollary 2.19, α is the solid angle at the vertex of a right cone over S1 with generator of

length ℓ. A simple calculation shows that this solid angle is 2π(1 −
√

1 − 1/ℓ2). Thus the

ℓ-monodromy of nS1 is trivial if and only if 2π(1 −
√

1 − 1/ℓ2) = 2πm/n for some m ∈ Z,

or ℓ = 1/
√

1 − (k/n)2, k = 1, 2, . . ., n − 1. !

Definition 4.2. For each n ≥ 2 and 1 ≤ k ≤ n − 1, let $k,n(t) be the unique closed plane

curve in 2ℓk,n-bicycle correspondence with nS1, such that $k,n(0) = 1 + 2ℓk,n ∈ C, where

ℓk,n = 1/
√

1 − (k/n)2.

See Figure 21. This class of curves is mentioned in Section 8.4 of [54].

Fig. 21. The curves $k,n (the solid curves) for 1 ≤ k < n ≤ 5 and (k, n) relatively prime. Each one is

in bicycle correspondence with the unit circle (the boundary of the gray disk); their common back

track is the dotted curve.
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Remark 4.3. Since the ℓk,n-monodromy of nS1 is trivial, we have in fact a whole circle

worth of planar closed curves in 2ℓk,n-bicycle correspondence with nS1. By the obvious

rotational symmetry of the bicycle equation for nS1, they are all obtained from $k,n by

rotation about the origin and shift reparametrization.

We next find an explicit arc length parametrization of $k,n by solving the bicycle

equation for S1.

Proposition 4.4. One has

$k,n(t) = eit
[
1 + 2ℓeiφ(t)

]
, (58)

where φ(t) is defined (as a continuous function) by

tan
φ

2
= −a tan

bt
2

, a = n
k

+
√(n

k

)2
− 1, b = k

n
, φ(0) = 0. (59)

Proof. Let $ be the unit circle in R2 = C, parameterized by $(t) = eit. Let $ℓ be the

(not necessarily closed) parameterized plane curve in 2ℓ-bicycle correspondence with $,

satisfying $ℓ(0) = 1 + 2ℓ. By definition, $ℓ(t) = $(t) + 2ℓr(t), where r(t) is the solution to

(4) with r(0) = 1 ∈ C. Taking $(t) = eit, r = eiθ in (4) gives ℓθ̇ = − cos(θ − t). Changing to

φ := θ − t gives $ℓ(t) = eit [
1 + 2ℓeiφ(t)] , where φ(t) satisfies φ̇ = −1 − (cos φ)/ℓ, φ(0) = 0.

Changing again to p = tan(φ/2), gives

ṗ = − 1
2ℓ

[
p2(ℓ − 1) + ℓ + 1

]
, p(0) = 0,

a constant coefficient Riccati equation, whose solution, for ℓ > 1, is

p = −a tan
bt
2

, a =
√

ℓ + 1
ℓ − 1

, b =
√

1 − 1
ℓ2 , ℓ > 1. (60)

For ℓ = ℓk,n = 1/
√

1 − (k/n)2, we obtain the stated formulas. !

Remark 4.5. There are expressions similar to (60) for $ℓ with 0 < ℓ ≤ 1 (which we do

not really use). For 0 < ℓ < 1,

p = −a tanh
bt
2

, a =
√

1 + ℓ

1 − ℓ
, b =

√
1
ℓ2 − 1.

For ℓ = 1, we have ṗ = −1 so that p(t) = −t.
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If (k, n) have a common divisor d > 1, then $k,n is a d-fold cover of $k̄,n̄, where

k̄ = k/d, n̄ = n/d, so all properties of $k,n can be easily deduced from those of $k̄,n̄. We

will thus restrict attention henceforth to $k,n with relatively prime (k, n).

Corollary 4.6. For all n ≥ 2 and 1 ≤ k ≤ n − 1,

1. $k,n and nS1 have the same length 2πn and the same λ-bicycle monodromy

for all λ > 0 (as in Proposition 4.1).

2. $k,n admits a Dk-symmetry (the symmetries of a regular k-gon); that is,

$k,n(t + 2πn/k) = e2π in/k$k,n(t),

$k,n(−t) = $k,n(t),
(61)

for all t ∈ R.

Proof. The first statement follows from Corollary 3.3 and Theorem 7 and the second

from (58) and (59). !

4.2 $k,n as Zindler curves

Let $(t) be an arc length parameterized closed immersed Zindler curve of length L. That

is, there is a number ρ ∈ (0, 1), called a rotation number of $, such that the chord length

∥$(t + ρL) − $(t)∥, corresponding to a fixed length ρL of an arc, is a positive constant

and the velocity of the midpoint ($(t + ρL) + $(t))/2 is parallel to $(t + ρL) − $(t). Note

that ρ is a rotation number if and only if so is 1 − ρ, and that a circle is Zindler for all

rotation numbers ρ ∈ (0, 1).

In this subsection we show that most $k,n are Zindler and determine their

associated rotation numbers (Theorem 10). The proof, although elementary, is somewhat

technical, so we give here the main idea.

By construction, each $k,n is in bicycle correspondence with nS1, hence its λ-

bicycle monodromy is hyperbolic for 0 < λ < 1 and parabolic for λ = 1. It follows

that for all λ ≤ 1 there is a planar closed curve $λ
k,n in 2λ-bicycle correspondence

with $k,n (unique up to reflection about one of the symmetry axes of $k,n). By Bianchi

permutability and circular symmetry, each $λ
k,n is a rigid rotation of $k,n about the

origin by some λ-dependent angle χ . By the Dk-symmetry of $k,n (Corollary 4.6), if χ

is a multiple of 2π/k then $λ
k,n coincides with $k,n (up to shift reparametrization), so

that $k,n is Zindler.
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Thus the proof of the Zindler property of $k,n and the calculation of the

associated rotation numbers reduce to the calculation of χ as a function of λ ∈ (0, 1].

This is done in Lemma 4.7 and is the main ingredient in the proof of Theorem 10. (In fact,

it is more convenient to write λ = sin(γ /2) and calculate χ as a function of γ ∈ (0, π ].)

Theorem 10. Let (k, n) be a relatively prime pair of positive integers. Then $k,n is a

Zindler curve if and only if 1 ≤ k ≤ n − 2, with n − k − 1 rotation numbers ρ ∈ (0, 1),

given by the equation

n tan(kπρ) = k tan(nπρ) (62)

(including ρ = 1/2 when both n and k are odd).

Proof. For each ℓ > 0, γ ∈ (0, π ] and t ∈ R, define

• $(t) = eit,

• $λ(t) = ei(t+γ ), where λ = sin(γ /2) ∈ (0, 1],

• $ℓ(t)—the (not necessarily closed) 2ℓ-bicycle transform of $(t) with $ℓ(0) =
1 + 2ℓ ∈ C,

• $λ
ℓ (t)—the completion of $λ(t)$(t)$ℓ(t) to the Darboux Butterfly $λ(t)$(t)$ℓ(t)

$λ
ℓ (t).

Note that $λ is in 2λ-bicycle correspondence with $ and so, by Bianchi

permutability (Proposition 3.8), $λ
ℓ is in 2λ-bicycle correspondence with $ℓ, as well as

2ℓ-bicycle correspondence with $λ. It follows (see Remark 4.3) that there exist χ , τ ≥ 0

such that

$λ
ℓ (t) = e−iχ$ℓ(t + τ ) (63)

for all t. See Figure 22.

Lemma 4.7. For ℓ > 1, χ(γ ) and τ (γ ) in (63) satisfy

tan
(

bτ

2

)
= b tan

γ

2
, χ = τ − γ , b =

√
1 − 1

ℓ2 .

It follows that χ is a monotonically increasing function of γ , varying from 0 to π(1/b−1),

as γ varies from 0 to π .

!

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rny087/4998816 by Pennsylvania State U

niversity user on 15 January 2019



52 G. Bor et al.

Fig. 22. The notation of the proof of Theorem 10.

Proof. By definition, we have

$ℓ(t) = eit(1 + 2ℓeiφ(t)),

where φ(t) is given by (60), and

$λ
ℓ (t) = eit(eiγ + 2ℓeiψ(t)),

for some function ψ(t). Substituting the last two equations in (63), we get

ei(γ+χ) + 2ℓei[ψ(t)+χ ] = eiτ + 2ℓei[φ(t+τ )+τ ].

Both sides of the last equation are parameterized arcs of circles of radius 2ℓ, hence their

centers and angular parameter must coincide, giving

τ = χ + γ , ψ(t) = φ(t + τ ) + γ .

Note that, strictly speaking, these equations hold only modulo 2π , but by the continuous

dependence of τ , χ , and ψ on γ , and the initial conditions τ (0) = χ(0) = ψ(0) = 0, they

hold as stated.

This gives the stated second formula and ψ(0) = φ(τ ) + γ , hence

tan
ψ(0)

2
= tan

(
φ(τ )

2
+ γ

2

)
=

tan φ(τ )
2 + tan γ

2

1 − tan φ(τ )
2 tan γ

2

.
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Fig. 23. The Darboux Butterfly ABCD.

Using (60), we get from the last equation

tan
ψ(0)

2
=

−a tan bτ
2 + tan γ

2

1 + a tan bτ
2 tan γ

2

, a =
√

1 + ℓ

1 − ℓ
. (64)

Next, we look at the Darboux Butterfly ABCD, where A = $(0) = 1, B = $λ(0) =
eiγ , C = $λ

ℓ (0) = eiγ + 2ℓeiψ(0), and D = $ℓ(0) = 1 + 2ℓ. See Figure 23.

Let C′ be the reflection of C about BD. Then ABC′D is a parallelogram, in which

α = ̸ DBC′ = ̸ BDA = −ψ(0)/2, AD = 2ℓ, AB = 2λ, and ̸ ABD = π/2 − α − γ /2. Applying

the sine law to △DAB, we get

sin(π/2 − α − γ /2)

2ℓ
= sin α

2λ
.

Using λ = sin(γ /2) and solving the last equation for tan α, we get

− tan
ψ(0)

2
= tan α = tan(γ /2)

ℓ + (ℓ + 1) tan2(γ /2)
.

Substituting this into the left hand side of (64) and simplifying, we obtain the stated

formula tan(bτ/2) = b tan(γ /2). It follows immediately from this formula that

χ ′(γ ) = τ ′(γ ) − 1 = u2

ℓ2(1 + b2u2)
,

where u = tan2(γ /2), hence χ (as well as τ ) is monotonically increasing in γ , as

stated. !
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We continue with the proof of Theorem 10. Setting ℓ = ℓk,n = 1/
√

1 − (k/n)2 in

Lemma 4.7, we have b = k/n, so that

n tan
k
n

τ

2
= k tan

γ

2
, (65)

and χ = τ − γ increases monotonically from 0 to π(n − k)/k, as γ varies from 0 to π .

Now the Zindler condition on $k,n is that it is in the bicycle correspondence with

itself (up to shift reparametrization). Due to the Dk-symmetry (see Corollary 4.6), this

means that χ in (63) should be an integer multiple of 2π/k. As γ varies from 0 to π ,

χ increases monotonically from 0 to π(n − k)/k, so there are exactly [(n − k)/2] values

γ ∈ (0, π ] for which χ is an integer multiple of 2π/k. For each such γ , $k,n is Zindler with

chord length 2λ = 2 sin(γ /2), giving rise to a pair of rotation numbers {ρ, 1 − ρ} ⊂ (0, 1),

except if ρ = 1/2, which occurs if and only if γ = π and n − k is even (i.e., k, n are both

odd). It follows that $k,n is Zindler if and only if 1 ≤ k ≤ n − 2, with a total of n − k − 1

rotation numbers ρ ∈ (0, 1), as stated.

To determine the associated rotation numbers, let γ be a value for which

χ = 2πm/k, m = 1, 2, . . . , [(n − k)/2]. (66)

An associated rotation number ρ ∈ (0, 1) satisfies

$λ
k,n(t) = $k,n(t + 2πnρ) (67)

for all t. Since k, n are relatively prime, there exists an integer n̄ such that nn̄ ≡ 1 (mod

k). Let m̄ := mn̄, then

2πm
k

≡ 2πm̄n
k

(mod 2π). (68)

Now we calculate

$λ
k,n(t) = e−i 2πm

k $k,n(t + τ ) by (63),(66)

= e−i 2πm̄n
k $k,n(t + τ ) by (68)

= $k,n

(
t + τ − 2πm̄n

k

)
by (61) (69)

= $k,n(t + 2πnρ) by (67)
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for all t. The last equality is equivalent to τ − 2πm̄n/k ≡ 2πnρ (mod 2πn), implying

k
n

τ

2
≡ πkρ (mod π). (70)

Next, applying 2ℓk,n-bicycling correspondence to (67) gives $λ(t) = $(t + 2πnρ)

or ei(t+γ ) = ei(t+2πnρ). It follows that γ ≡ 2πnρ (mod 2π) or

γ

2
≡ πnρ (mod π). (71)

Substituting (70) and (71) in (65), we see that ρ satisfies (62).

We have shown so far that $k,n has n − k − 1 rotation numbers and that they all

satisfy equation (62). To complete the proof of Theorem 10 it is thus sufficient to show

that equation (62) has exactly n − k − 1 solutions ρ ∈ (0, 1) (including ρ = 1/2, when k,

n are both odd).

Lemma 4.8. For any pair of integers k, n with 1 ≤ k < n, equation (62)

n tan(kπρ) = k tan(nπρ)

has n − k − 1 solutions in (0, 1), including ρ = 1/2 when both n and k are odd.

Proof. Clearly, ρ is a solution if and only if

(
1

nπ

)
arctan

(n
k

tan(kπρ)
)

≡ ρ

(
mod

1
n

)
.

For each j ∈ Z, let Ij = ( j/k − 1/2k, j/k + 1/2k) ⊂ R (the open interval of length 1/k

centered at j/k) and define fj : Ij → R by

fj(ρ) :=
(

1
nπ

)
arctan

(n
k

tan(kπρ)
)

+ j
n

, ρ ∈ Ij, j ∈ Z.

One can verify that fj extends smoothly to Ij and that the extensions at adjacent intervals

coincide at the shared endpoints, combining to define a smooth, strictly increasing

function f : R → R, satisfying

(i) f (0) = 0,

(ii) f (1) = k/n, and
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Fig. 24. The function f (ρ) of the proof of Lemma 4.8.

(iii) 0 < f ′(ρ) ≤ 1 for all ρ ∈ R, with f ′(ρ) = 1 only at isolated points. (In fact,

f ′(ρ) = 1 precisely at ρ ≡ 0 (mod 1/k).)

See Figure 24. By construction, the solutions of equation (62) are given by

f (ρ) ≡ ρ

(
mod

1
n

)
.

It now follows easily from the above three properties of f that this equation has exactly

n − k − 1 solutions in the interval 0 < ρ < 1. !

This concludes the proof of Theorem 10.

Remark 4.9.
(i) Here is a table of the (approximate) rotation numbers ρ ∈ (0, 1/2] of $k,n, for

relatively prime pairs (k, n), with 1 ≤ k ≤ n − 2 and n ≤ 7.
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(ii) Here is also a plot of all rotation numbers for n = 11.

(iii) For small values of (k, n), the numbers tan2(πρ) are roots of linear or

quadratic polynomials, obtained from multiple angle trigonometric identi-

ties. Here are all such cases with ρ ̸= 1/2:

k n tan2(πρ)

1 4 5

1 5 5/3

2 5 2
√

21 − 7

1 6
(
21 ± 4

√
21

)
/3

1 7
(
7 ± 2

√
7
)

/3

For higher values of (k, n), the numbers tan2(πρ) are roots of higher degree

polynomials.

(iv) For k = 1, (62) is n tan(πρ) = tan(nπρ). This is equation (14) of Theorem 7

of [46], describing the rotation numbers ρ for which the (simple) unit circle

can be infinitesimally deformed in the class of planar Zindler curves with

rotation number ρ.

The same equation appeared in a study of billiards and of a flotation problem

[21, 22]. See [13] for number theoretic properties of its solutions. A discrete

version of the equation is proposed in [46]; see [11, 12] for its solutions.
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Fig. 25. The spherical curve $λ
ℓ .

4.3 Spherical curves in bicycle correspondence with $k,n

As we have seen in the previous subsection, all curves in 2λ-bicycle correspondence with

$k,n, for λ ≤ 1, are rotations of $k,n about the origin. For a generic value of λ > 1 (i.e., for

λ ̸= ℓk′,n, 1 ≤ k′ < n), the λ-monodromy of $k,n is elliptic, and thus there are two space

curves in 2λ-bicycle correspondence with $k,n, related by reflection about the xy-plane.

Proposition 4.10. Let λ > 1 and let $λ
k,n be a curve in R3 in 2λ-bicycle correspondence

with $k,n. Then $λ
k,n is either planar, contained in the xy plane, in which case λ = ℓk′,n

for some 1 ≤ k′ < n, or it is a spherical curve, with the center of the sphere on the z axis.

Proof. We define for every ℓ > 0, λ > 1, and t ∈ R:

• $(t) = (eit, 0) ∈ C ⊕ R = R3 (lower thin circle in Figure 25),

• $λ(t) = (e−it, 2
√

λ2 − 1) (upper thin circle),

• $ℓ(t)—the (not necessarily closed) curve in the xy-plane in 2ℓ-bicycle corre-

spondence with $, such that $ℓ(0) = (1 + 2ℓ, 0, 0) ∈ R3 (lower thick planar

curve),

• $λ
ℓ (t)—the completion of $λ(t)$(t)$ℓ(t) to the Darboux Butterfly $λ(t)$(t)$ℓ(t)

$λ
ℓ (t) (upper thick space curve).

Note that $ is in 2λ-bicycle correspondence with $λ and in 2ℓ-bicycle correspon-

dence with $ℓ, and hence, by Bianchi permutability, $λ
ℓ is in 2λ-bicycle correspondence

with $ℓ and in 2ℓ-bicycle correspondence with $λ. Since $λ is related to $ by Euclidean

translation along the z-axis and reparametrization, it is enough to show that any curve

(not necessarily closed) in 2ℓ-bicycle correspondence with $ lies either in the xy plane

or on some sphere centered on the z-axis.
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Fig. 26. The proof of Proposition 4.10.

At this junction, we can explicitly solve the bicycle equation, as described

in Section 2.4: this is an equation with constant coefficients. We present a more

geometrical argument here.

The desired property is invariant with respect to rotations about the z-axis, so

it can be shown in a frame rotating about the z-axis with angular velocity 1.

In this frame, the front wheel $(t) is stationary, say at A = (1, 0, 0), so the rear

wheel traces some curve on the two-sphere Sℓ of radius ℓ centered at A. We claim that

this curve is a circle (shown as a dotted chord of Sℓ in Figure 26), whose axis (the line

through its center, perpendicular to the plane of the circle) intersects the z axis at some

point C, or else is parallel to the z-axis, in which case the curve is the equatorial circle

(the intersection of Sℓ with the xy-plane).

Indeed, the bicycle equation (4) in a rotating frame (the Frenet–Serret frame) is

autonomous, that is, defines a time-independent conformal vector field on Sℓ, whose

flow is a one-parameter elliptic subgroup of the Möbius group of Sℓ (here we use the

fact that ℓ > 1). Its trajectories are planar circles, with two fixed points, the vertices of

the two right circular cones over $ with generator of length ℓ; one of them, B, is shown

in Figure 26.

It follows that the curve in 2ℓ-bicycle correspondence with $, generated by this

rear track (shown as a dotted chord of S2ℓ in Figure 26), is a circle on the sphere S2ℓ

of radius 2ℓ, centered at A, as well as a circle on the sphere centered at C and passing

through A. !
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A Bicycle correspondence as a Darboux transformation

In this appendix we relate the bicycle correspondence for curves in R3 with Darboux

transformations of a certain spectral problem.

We use the STP construction (after Sym, Tafel, and Pohlmeyer), associating

with each solution of the AKNS system a family of curves in su2 ∼= R3. We note that

only Theorem 12 of this section is new; the preliminary material, as well as related

motivation and details, can be found in [40]. The curves that we are dealing with in this

subsection are not necessarily closed.

We begin with a description of the AKNS system, following [4]. Given a complex-

valued function q(t) of a real variable t, we define the linear system

1t = (Q + iλA)1, (A.1)

where 1 = 1(t, λ) is a complex 2 × 2 matrix-valued function of two real variables,

1t = ∂1/∂t and

Q =
(

0 q

−q̄ 0

)

, q = q(t), A =
(

1
2 0

0 −1
2

)

.

The variable λ is called the spectral parameter and Q is the potential. Observe that

Q + iλA is su2-valued, hence if we assume, as we shall do henceforth, that

1(0, λ) ∈ SU2 for all λ ∈ R,

then 1(t, λ) ∈ SU2 for all (t, λ) as well.

Given a solution 1(t, λ) to (A.1), we define, following [45], the associated STP

curves $(t, λ) in su2 by

$ = 1∗1λ. (A.2)

In what follows, we use the (slightly modified) standard Killing form on su2,

∥X∥2 = −2tr(X2).

Proposition A.1. For each λ, the map t '→ $(t, λ) defines an arc length parameterized

curve in su2, that is, ∥$t∥ = 1, with the curvature and torsion functions given in terms

of q(t) by

κ = 2|q|, τ = Im (qt/q) − λ. (A.3)
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Conversely, given a curve C in su2 with curvature κ and torsion τ , the AKNS

system associated with

q = κ

2
ei

∫
τ

has a family of STP curves $(·, λ) with curvature κ and torsion τ − λ, so that $(·, 0) is

congruent to C. In fact, by adjusting the initial condition 1(0, λ) in (A.1), one can have

$(·, 0) actually coincide with C.

Proof. A simple calculation shows that $ = 1∗1λ implies $t = 1∗(iA)1. Since the

Killing form is conjugation-invariant, ∥$t∥2 = ∥iA∥2 = 1. Similarly, one finds that $tt =
1∗[iA, Q]1 and

$ttt = 1∗ ([iA, Qt] + [[iA, Q], Q + iλA])1,

from which follows

κ = ∥$tt∥ = ∥[iA, Q]∥ = 2|q|

and

τ = ⟨[$t, $tt], $ttt⟩
κ2 = Im (qt/q) − λ.

Conversely, given a curve C in su2 with curvature and torsion functions κ, τ , one

can verify easily that q = (κ/2)ei
∫

τ satisfies (A.3) for λ = 0, so that the STP curve $(·, λ),

associated with the AKNS system defined by q, has curvature κ and torsion τ − λ.

Finally, if we take a solution 1(t, λ) to the AKNS system (A.1) and right-multiply it

by G(λ) ∈ SU2, then we obtain another solution of (A.1), whose STP curve is G∗$G+G∗Gλ.

The first term is a rotation of $ and the second gives a translation, so that by choosing

G appropriately we can move $(·, 0) onto C. !

Next, we define the Darboux transformations of the AKNS system (A.1). To this

end, we fix a non-real complex number µ and a nonzero element v ∈ C2 and use the data

(µ, v) to transform the AKNS system (A.1) to a new system 1̃t = (Q̃+ iλA)1̃, where Q̃ and

1̃ are given in terms of Q, 1 and (µ, v), as follows. Let

φ(t) =
(

φ1(t)

φ2(t)

)

be the C2-valued function defined by

φt = (Q + iµA)φ, φ(0) = v,
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and the associated projection operator

π = φφ∗

∥φ∥2 = 1
|φ1|2 + |φ2|2

(
φ1φ̄1 φ1φ̄2

φ2φ̄1 φ2φ̄2

)

.

Note that π(t) is the orthogonal projection on the (complex) one-dimensional subspace

of C2 spanned by φ(t), hence it is unchanged if v is multiplied by a nonzero complex

scalar.

Next, define the complex numbers

α =

√
λ − µ̄

λ − µ
, β = µ − µ̄

λ − µ̄
,

and the linear operators

U = α(I − βπ), Q̃ = Q + i(µ − µ̄)[A, π ], (A.4)

where [A, π ] = Aπ − πA.

Lemma A.2.

1. U(t, λ) ∈ SU2.

2. Q̃(t) ∈ su2 is the potential associated with the complex function

q̃ = q + i(µ − µ̄)
φ̄1φ2

∥φ∥2 .

Proof.

1. π is an orthogonal projection operator, hence is conjugate, by some element

in SU2, to diag(1, 0). It follows that U is conjugate, by the same element, to

diag(α(1 − β), α), from which it follows that U(t, λ) ∈ SU2.

2. One calculates that

[A, π ] = 1
∥φ∥2

(
0 φ1φ̄2

−φ̄1φ2 0

)

,

from which the stated formula follows easily. !

The following theorem shows how the Darboux transformation Q '→ Q̃ is

matched by a transformation 1 '→ 1̃ of the solutions to the associated AKNS systems.
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This is followed by a description of the effect of the transformation on the associated

curves in R3.

Theorem 11. ([40]) 1 is a solution to the AKNS system (A.1) if and only if 1̃ := U1 is a

solution to the AKNS system

1̃t = (Q̃ + iλA)1̃, (A.5)

where U, 1̃ are given by (A.4) above.

The proof is by a straighforward calculation using the formulas above and is

omitted.

Now we look at the effect of the Darboux transformation 1 '→ 1̃ on the

associated STP curves.

Proposition A.3. Let $̃ = 1̃∗1̃λ. Then

$̃ − $ = µ − µ̄

|λ − µ|2
1∗

(
π − 1

2
I
)

1, ∥$̃ − $∥ = |µ − µ̄|
|λ − µ|2

. (A.6)

In particular, the distance ∥$̃(t, λ) − $(t, λ)∥ is independent of t.

Proof. The formula for $̃ − $ is a direct calculation using the definitions above and is

omitted. To calculate ∥$̃ − $∥, note that π , being an orthogonal projection, is conjugate

by an element in SU2 to diag(1, 0), thus i
(
π − 1

2 I
)

is conjugate by the same element to iA,

which is of unit norm. This implies the stated formula. !

The last proposition states that the pair of STP curves $(·, λ), $̃(·, λ) satisfy one

of the conditions needed to be in bicycle correspondence. To get the other condition, one

needs to restrict µ and λ.

Theorem 12. If we choose a purely imaginary µ = iε in the Darboux transformation

described above and λ = 0, then the pair of su2-valued curves $ and $̃ are in 2/|ε|-bicycle

correspondence.

Conversely, let $1, $2 be two parametrized curves in R3 in 2ℓ-bicycle correspon-

dence. Then, there exists an AKNS system (A.1) with initial conditions 1(0, λ) ∈ SU2

whose corresponding STP curve at λ = 0 is $1, and a Darboux transform with µ = i/ℓ

mapping $1 to $2.
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Proof. Consider a Darboux transformation with µ = iε and associated STP curves $, $̃.

Let W = $̃ − $. By Proposition A.3, ∥W∥ = 2/|ε|. What is left to show then is that W and

($t + $̃t)/2 are parallel for λ = 0, that is, [W, $t + 1
2Wt] = 0. The proof is by a simple but

lengthy computation. We omit the details.

Conversely, given two curves $1, $2 in su2 in 2ℓ-bicycling correspondence, let

κ1 and τ1 be the curvature and torsion functions of $1. According to Proposition A.1,

the AKNS system associated with q = (κ1/2)ei
∫

τ1 , with appropriate initial conditions,

realizes $1 as the associated STP curve at λ = 0. We now show that an appropriate

Darboux transformation maps $1 to $2.

From the first part of the theorem, we know that Darboux transformations with

µ = i/ℓ produce curves in 2ℓ-bicycle correspondence with $1. We use the expression for

$̃ − $ in formula (A.6) of Proposition A.1 to show that, by varying v ∈ C2 \ {0}, we obtain

all curves in 2ℓ-bicycling correspondence with $1 and, in particular, $2. By this formula,

the direction of $̃ − $ at t = 0 is the unit vector

B(v) := i
(

vv∗

∥v∥2 − 1
2

I
)

∈ su2,

rotated by conjugation with 1. Now the map v '→ B(v) is clearly SU2-equivariant, B(gv) =
gB(v)g−1. Its image is therefore the whole unit sphere in su2 (the orbit of iA under SU2).

It follows that every initial direction of $̃−$ at t = 0 can be obtained by choosing

v appropriately; consequently, we obtain all curves $2 in 2ℓ-bicycle correspondence with

$1. !

B Proof of Proposition 3.15

We will prove the statement of Proposition 3.15 for a class of ODEs (ordinary diferential

equations) that includes the bicycle Riccati equation (46). For each C∞ function f : C ×
R → C, complex analytic in the first variable and T-periodic in the second, consider the

ODE

Ż = −1
ℓ

Z + f (Z, t), (B.1)

where Ż = ∂tZ. (Note that (46) converts to this form upon the change of variable t '→ − t,

which interchanges stable and unstable fixed points.) We will show the following.

Proposition B.1. For every function f : C×R → R as above, there exists an ℓ0 > 0 such

that for every 0 < ℓ < ℓ0

(1) there is a unique periodic solution Z(t, ℓ) to (B.1) with |Z(t, ℓ)| < 1 for all t.
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(2) Z(t, ℓ) is a stable periodic solution.

(3) Extended to ℓ = 0 as Z(t, 0) ≡ 0, Z(t, ℓ) is infinitely differentiable in R × [0, ℓ0).

In particular, limℓ↓0 ∂n
t Z(t, ℓ) = 0 and ∂n

ℓ Z(t, 0) exist for all t ∈ R and integer

n ≥ 0.

Note that the above existence result implies immediately the uniqueness state-

ment in Proposition 3.15, since a Möbius transformation in PSL2(C) has at most one

unstable fixed point. We divide the proof into the following steps.

1. There exists an ℓ0 > 0 (depending on f alone) such that for all 0 < ℓ < ℓ0

the period map ϕ : C → C of (B.1) has a unique fixed point in D := {|Z|≤ 1}.
This fixed point is stable and the associated periodic solution Z(t, ℓ) is C∞ in

R × (0, ℓ0).

2. For all integers n ≥ 0:

lim
ℓ↓0

∂n
t Z(t, ℓ) = 0. (B.2)

3. For all integers n ≥ 0, the limit

an(t) := lim
ℓ↓0

∂n
ℓ Z(t, ℓ) (B.3)

exists.

4. Z(t, ℓ), extended to ℓ = 0 by Z(t, 0) = 0, is C∞ in R×[0, ℓ0) with ∂n
ℓ Z(t, 0) = an(t).

Step 1. Let M = max |f (Z, t)| over |Z| ≤ 1 and t ∈ R, and let ℓ1 > 0 be such that 1/ℓ1 > M.

Then, for all ℓ < ℓ1, if Z(t) is a solution to (B.1) and |Z(t)| = 1 for some t, one has

1
2

d
dt

|Z|2 = Z · Ż
(B.1)= −1

ℓ
|Z|2 + f · Z ≤ −1

ℓ
+ 1

ℓ1
< 0. (B.4)

It follows that for ℓ < ℓ1 the period map ϕ maps D into itself, and thus has a fixed point.

To prove uniqueness we show that, for ℓ small enough, ϕ resricted to D is a

contraction. For this, it is enough to show that |ϕ′(Z0)| ≤ ρ for some ρ < 1 and all Z0 ∈ D.

This will show also that the fixed point is stable.

Choose an arbitrary solution Z(t) of (B.1) with Z(0) ∈ D and consider a nontrivial

solution U(t) of the linearized equation U̇ = −1
ℓ U + fZU around Z(t); here fZ = ∂Zf (Z, t).

The derivative of the period map ϕ at Z(0) is given by

ϕ′(Z(0)) = U(T)

U(0)
= exp

∫ T

0

(
−1

ℓ
+ fZ

)
dt.
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Now, given ε > 0, there exists ℓ0 < ℓ1 such that Re
(
−1

ℓ + fZ
)

< −ε for all ℓ ≤ ℓ0, hence

|ϕ′(Z(0))| ≤ e−Tε < 1, proving that ϕ is a contraction in D. Since ϕ is analytic, and the

contraction is by a factor bounded away from 1, we conclude that the fixed point is an

analytic function of ℓ for all 0 < ℓ < ℓ0.

Step 2. We prove (B.2) by induction on n. For n = 0, it suffices to show that for

ℓ < ℓ1, our periodic solution satisfies |Z(t, ℓ)| ≤ ℓ/ℓ1. If |Z(t, ℓ)| > ℓ/ℓ1 for some t, then

(for this t), by (B.4),

1
2

d
dt

|Z|2 = −1
ℓ
|Z|2 + f · Z ≤

(
−1

ℓ
|Z| + 1

ℓ1

)
|Z| < 0. (B.5)

It follows that for all ℓ < ℓ1 the periodic solution Z(t, ℓ) is confined to the disk |Z| ≤ ℓ/ℓ1

and thus limℓ↓0 Z(t, ℓ) = 0. This completes the step n = 0 of the induction.

Assume now that (B.2) holds up to order n − 1 for some n > 0. Let us denote

Yk := ∂k
t Z. Differentiating (B.1) n times by t, we obtain

Ẏn = −1
ℓ

Yn + ∂n
t f .

The last term is of the form

∂n
t f = AYn + Bn,

where A = fZ(Z(t, ℓ), t) and where Bn is a polynomial in the variables Z, Y1, . . . , Yn−1

(containing no Yn) with coefficients of the form ∂ i
Z∂

j
tf (Z, t) with i + j ≤ n. By the

assumption on f , these coefficients are bounded. This and the inductive assumption

imply that

lim
ℓ↓0

A = fZ(0, t), lim
ℓ↓0

Bn = B0
n, (B.6)

where B0
n = B0

n(t) is a smooth function. Summarizing, Yn satisfies the ODE

Ẏn =
(

−1
ℓ

+ A
)

Yn + Bn (B.7)

with the coefficients satisfying (B.6). The same argument used in proving that limℓ↓0

Z = 0 applies here, and it shows that limℓ↓0 Yn = 0. This completes the proof of (B.2).

Step 3. We prove (B.3) by induction on n. For n = 0, we already proved it in Step 2. For

any fixed n > 0, assume that (B.3) holds for all orders < n. Let Zk = ∂k
ℓ Z. Multiplying

both sides of (B.1) by ℓ and differentiating n times with respect to ℓ, we get

ℓŻn + nŻn−1 = −Zn + ∂n
ℓ (ℓf ). (B.8)
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Now

∂n
ℓ (ℓf (Z, t)) = ℓ∂n

ℓ f + n∂n−1
ℓ f = ℓAZn + ℓCn + n∂n−1

ℓ f ,

where, similarly to Step 3, we have A = fZ and Cn is a polynomial in Z, Z1, . . . Zn−1 with

coefficients of the form ∂
j
Zf (Z, t) with j ≤ n. By Step 3,

lim
ℓ↓0

A
def= fZ(0, t)

def= A0,

and by the inductive assumption,

lim
ℓ↓0

Cn
def= C0

n

exists. Substituting all this into (B.8) yields, after some manipulation,

Żn = −α

ℓ
(Zn − β) , (B.9)

where

α = 1 − ℓA, β =
n∂n−1

ℓ f − nŻn−1 + ℓCn

α
.

We have limℓ↓0 α = 1; to show that limℓ↓0 β exists, we need to know that Żn−1 has a limit

as ℓ ↓ 0. We showed that this limit exists for Ż0 = Ż; let us add the inductive assumption

to the one already made that limℓ↓0 Żn−1 exists; we will show in a moment that then

limℓ↓0 Żn exists as well. With this assumption,

lim
ℓ↓0

β = n lim
ℓ↓0

(
∂n−1
ℓ f − Żn−1

)

exists. To complete the induction we must show that the limits of Zn and of Żn exist. The

existence of these limits follows from (B.9) and from the existence of the limits of α and

β; we will in fact show that

lim
ℓ↓0

Zn = lim
ℓ↓0

β,

and

lim
ℓ↓0

Żn = lim
ℓ↓0

β̇. (B.10)

Indeed,

1
2

d
dt

(Zn − β)2 (B.9)= −α

ℓ
(Zn − β)2 − β̇ · (Zn − β),
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which shows that |Zn − β| is monotonically decreasing whenever |Zn − β| ≥ 2 max |β̇|ℓ.

This shows that our periodic Zn is confined to |Zn − β| < 2 max |β̇|ℓ (by the argument

used in Step 3), and thus converges to β as ℓ ↓ 0, as claimed.

Finally, differentiating (B.9) by t, one can apply a similar Lyapunov–type argu-

ment to prove the existence of the limit in (B.10). This completes the induction step and

thus the proof of (B.3).

Step 4. Consider the difference quotient

Zn(t, ℓ) − Zn(t, 0)

ℓ
= 1

ℓ

∫ ℓ

0
Zn+1(t, s) ds,

where Zn(t, 0) is the limit which exists by Step 3. Since also limℓ↓0 Zn+1(t, ℓ) exists, so

does the limit of the above integral, showing that

lim
ℓ↓0

Zn(t, ℓ) − Zn(t, 0)

ℓ
= Zn+1(t, 0),

and thus proving the claim. !
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