A Perspective on Altitudes

In my "geometry for teachers" class a few years ago, I was trying to explain why the altitudes in a triangle are concur rent. The (perhaps) most common proof, which identifies the concurrency point as the orthocenter of another larger triangle still felt insufficiently direct to me. I wa also wondering whether a more direct geometrical characterization of the concurrency point exists.

Figure 1. Pushing the triangle into a corner B_{i} is the point at which the line $A_{i} P$ inter sects with the opposite side.
As it turns out, embedding the problem in three dimensions yields an additional insight. To begin, we shove an arbitrary
acute ${ }^{1}$ triangle $A_{1} A_{2} A_{3}$ into the corner of a rectangular quadrant, as shown in Figure 1; each vertex now lies on a coordinate axis
I claim that the concurrency point of he altitudes is precisely the foot P of the perpendicular from the origin onto the plane of the triangle.

Proof

With P defined as in the previous sentence, let B_{1} be the point at which the line $A_{1} P$ intersects with side $A_{2} A_{3}$
${ }^{1}$ Unfortunately, this approach does not seem to extend to obtuse triangles; or perhaps I am not acute enough to find an extension.

Figure 2. The tangent cone.

I claim that $A_{1} B_{1}$ is an altitude of the triangle. Indeed, $A_{2} A_{3} \perp O P$ (since $\left.A_{2} A_{3} \in \operatorname{plane}\left(A_{1} A_{2} A_{3}\right) \perp O P\right) \quad$ and $A_{2} A_{3} \perp O A_{1} \quad$ (since $\quad A_{2} A_{3} \in$ plane $\left.\left(O A_{2} A_{3}\right) \perp O A_{1}\right)$. In summary, because $A_{2} A_{3}$ is normal to two lines $\left(O P\right.$ and $\left.O A_{1}\right)$ in the plane $P O A_{1}$, it is normal to every line in that plane and thus to $A_{1} B_{1}$. So $A_{1} B_{1}$ is indeed an altitude. The same argument applies to $A_{i} B_{i}$ for $i=2,3$, meaning that all altitudes pass through P. Q.E.D.

Proof 2
Here is a slightly different way to express essentially the same idea.

(a)

Referring to Figure 2, construct the circular cone tangent to the plane of the triangle, with vertex A_{1} and axis $A_{1} O$ Define B_{1} as the point at which the line of tangency intersects with side $A_{2} A_{\text {. Now }}$. Nof $A_{1} B_{1} \perp A_{2} A_{3}$, according to Figure 3a, and $A_{1} B_{1}$ passes through P, according to Figure 3 b (with P defined as above). This shows that the altitude from an arbitrarily chosen vertex passes through P. Q.E.D

The figures in this article were provided by the author.

Mark Levi (levi@math.psu.edu) is a professor of mathematics at the Pennsylvania State University.

(b)

Figure 3. In (a), the generator is orthogonal to the base for a right circular cone. In (b), the foot P of the perpendicular to a tangent plane from a point O on the axis lies on the line of tangency

