Referring to Figure 2, construct the cir-

cular cone tangent to the plane of the

triangle, with vertex A_1 and axis A_1O .

Define B_1 as the point at which the line of

tangency intersects with side A_2A_3 . Now

 $A_1B_1 \perp A_2A_3$, according to Figure 3a,

and A_1B_1 passes through P, according to

Figure 3b (with P defined as above). This

shows that the altitude from an arbitrarily

The figures in this article were provided

Mark Levi (levi@math.psu.edu) is a pro-

fessor of mathematics at the Pennsylvania

chosen vertex passes through P. Q.E.D.

by the author.

State University.

A Perspective on Altitudes

In my "geometry for teachers" class a few years ago, I was trying to explain why the altitudes in a triangle are concurrent. The (perhaps) most common proof, which identifies the concurrency point as the orthocenter of another larger triangle, still felt insufficiently direct to me. I was also wondering whether a more direct geometrical characterization of the concurrency point exists.

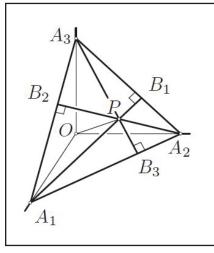


Figure 1. Pushing the triangle into a corner. B_i is the point at which the line A_iP intersects with the opposite side.

As it turns out, embedding the problem in three dimensions yields an additional insight. To begin, we shove an arbitrary acute¹ triangle $A_1A_2A_3$ into the corner of a rectangular quadrant, as shown in Figure 1; each vertex now lies on a coordinate axis.

I claim that the concurrency point of the altitudes is precisely the foot P of the perpendicular from the origin onto the plane of the triangle.

Proof

With P defined as in the previous sentence, let B_1 be the point at which the line A_1P intersects with side A_2A_3 .

¹ Unfortunately, this approach does not seem to extend to obtuse triangles; or perhaps I am not acute enough to find an extension.

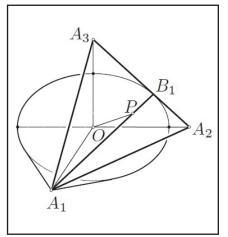


Figure 2. The tangent cone.

a corner of a
in Figure 1;
inate axis.I claim that A_1B_1 is an altitude of
the triangle. Indeed, $A_2A_3 \perp OP$ (since
 $A_2A_3 \in plane(A_1A_2A_3) \perp OP)$ and
 $A_2A_3 \perp OA_1$ (since $A_2A_3 \in plane$
 $(OA_2A_3) \perp OA_1$). In summary, because
 A_2A_3 is normal to two lines
(OP and OA_1) in the plane
 POA_1 , it is normal to every
line in that plane and thus to
 A_1B_1 . So A_1B_1 is indeed an
 A_1B_1 . So A_1B_1 is indeed an
 A_1B_1 .

altitude. The same argument applies to A_iB_i for i=2, 3, meaning that all altitudes pass through P. Q.E.D.

Proof 2

Here is a slightly different way to express essentially the same idea.

