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Abstract
Particles in rotating saddle potentials exhibit precessional motion which, up to 
now, has been explained by explicit computation. We show that this precession 
is due to a hidden Coriolis-like force which, unlike the standard Coriolis force, 
is present in the inertial frame. We do so by finding a hodograph-like ‘guiding 
center’ transformation using the method of normal form. We also point out 
that the transformation cannot be of contact type in principle, thus showing 
that the standard (in applied literature) heuristic averaging obscures the fact 
that the transformation of the position must involve the velocity.
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(Some figures may appear in colour only in the online journal)

1. Introduction and background

We consider the motion of a particle in the rotating saddle potential in the plane. The ‘spinning’ 
potential whose graph is obtained by rotating the graph of a fixed potential U x U x x,0 0 1 2( ) ( )=  
with angular velocity ω is

U x t U R x x x x, , ,0
1

1 2
2( ) ( )    ( ) R= = ∈−

where

ω ω ω
ω ω

= = −R R t t t
t t

cos sin
sin cos( )( )
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is the counterclockwise rotation. If U0 is a saddle with equal principal curvatures, then

U x x x
1
2

0 1
2

2
2( ) ( )= −

without the loss of generality, and the equations of motion x U˙ = −∇  take the form

x S t x x¨ 0, ,2( )    Rω+ = ∈ (1)

where

τ τ τ
τ τ

τ ω=
−

=⎜ ⎟
⎛
⎝

⎞
⎠S tcos 2 sin 2

sin 2 cos 2
, .( )   

These equations describe the linearized motion of a particle sliding without friction on a rotat-
ing saddle surface (with equal and opposite principal curvatures) in the presence of gravity 
(m  =  1, g  =  1), figure 1. It is a surprising fact, known for almost a century [1–3, 5–7] that the 
equilibrium position of the particle becomes stable if the surface rotates around the vertical 
axis sufficiently fast (a heuristic explanation of this effect can be found in [8], and is also given 
below). Numerical experiments show another puzzling effect: the Foucault-like precession 
[8–11], figure 2.

A similarly surprising phenomenon is the stabilization of a ball rolling without slipping 
on a rotating saddle surface (several demonstrations can be found on YouTube) [10, 12]. 
Superficially, the two effects appear to be the same; however, the reasons for stability are 
entirely different. For the rolling ball, the gyroscopic effect, which has no counterpart for a 
point mass in our case, plays the key role. In fact, the rolling ball is stable even if the surface 
is horizontal and flat, [13]. The rolling ball is an entirely different system: first, it is a nonho-
lonomic system (see [14, 15] for more details), unlike the one considered here, and second, it 
has more degrees of freedom.

Figure 1. A particle on a rotating saddle surface.

Figure 2. A typical trajectory x; its ‘guiding center’ u; their superposition.
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Returning to the particle in the rotating saddle potential, the force field S t x( )ω−  in (1) admits 
the following nice interpretation. Consider the saddle force field x x,1 2⟨ ⟩− , and make it time-
dependent by rotating each vector counterclockwise with angular velocity 2ω. Equation (1) 
describes the motion of the unit point mass in this force field.

2. The results

2.1. An averaging result

Theorem 1. Let x(t) be a solution of (1), and consider the associated function

( / )( )   ε ε ε= − − = −⎜ ⎟
⎛
⎝

⎞
⎠u x S t x Jx J

4
˙ , 0 1

1 0

2

 (2)

built out of x and ẋ. This ‘image’ of x satisfies

u Ju u f u u¨
4

˙
4

, ˙, ,
3 2

4 ( )ε ε ε ε− + = (3)

where f is linear in u, u̇ and analytic in ε, in a fixed neighborhood of 0ε = .

Figure 2 shows a typical trajectory of x, the corresponding trajectory of u, and their 
superposition.

According to (3), the ‘guiding center’ u behaves (modulo the O 4( )ε -terms) as a unit point 

mass with a unit charge, subject to the restoring force u
4

2

− ε  and to the magnetic force due to 
the magnetic field of constant magnitude B 43/ε=  perpendicular to the u-plane. Alternatively, 
one can think of Ju4 ˙3( / )ε−  as the Coriolis force which would have been caused by the rotation 
of the reference frame with angular velocity 83/ε , although of course our frame is inertial. This 
seems to be the first example of a Corilois-like force arising in an inertial reference frame [19].

It should be noted that the O 3( )ε  ‘magnetic’ effect is small compared to the O 2( )ε  restor-
ing force in (3), as reflected by the ‘petals’ in figure 3 becoming closely spaced for smaller ε.

While a heuristic explanation of the stabilizing restoring force u
4

2

− ε  is known (and 
described in section 3), such an explanation of the ‘Coriolis force’ u̇

4

3ε  is still unknown. Part 
of the difficulty lies in the fact that u, unlike x, is not a ‘material particle’ but rather a mixture 
of position and velocity.

Figure 3. The ‘Coriolis’ effect is one order in ε higher than the stabilizing effect: here 
ε = 0.2 versus ε = 0.5 in figure 2.
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Remark 1. It is tempting to study the system in the rotating frame (as had been done, [8, 
10]), since in such a frame the equations become autonomous. The problem with this ap-
proach is that solutions such as those shown in figure 2 move rapidly relative to the rapidly 
rotating frame and thus the region in the phase space they occupy grows with 1ω ε= − . In fact, 
in the rotating frame one can write down explicit solutions ([1–3, 7, 19, 20]), but this hides 
the Coriolis effect.

Theorem 1 was announced in an expository article [16], but without the derivation, and more 
importantly without an explanation of how it was arrived at, and without the mention of an 
obstruction that (for us) stood in the way of obtaining this result (theorem 2 in the next section).

2.2. Contact transformations

The standard (in the physics and applied mathematics literature) textbook heuristic averag-
ing procedure as described in Landau–Lifshitz [17–19] involves transformations acting on 
the position variable, with the velocity transformation dictated by the transformation of the 
position. In other words, these are transformations of contact type. In attempting to come up 
with an averaging result we ran into difficulties which led to the realization that this class of 
contact transformations is actually too narrow to eliminate any higher order terms beyond 
constant, not only for (1), but even in the simpler scalar case x a t f x¨ ( ) ( )ω= , where a : →R R 
is periodic and f : n n→R R , considered in [18]. The heuristic procedure used in [18] does give 
a correct differential equation in the end, but it does not make it clear that the transformation 
must involve the velocity, and not only the position, and thus is not justified, except for the fact 
that it gives the correct result. In fact, the transformation used in the proof in [29] does involve 
the velocity, i.e. is not of contact type, although this fact also was not stated.

We now make this precise as follows.
Our extended phase space x y t, , 5{ } R=  carries a natural contact structure [4])

x y td d ,α = − (4)

and the velocity vectors

V x y t y S t x˙, ˙, ˙ , , 1⟨ ⟩ ⟨ ( ) ⟩ω= = −

corresponding to (1) belong to the distribution 0α =  defined by this structure since 
V x y˙ 0( )α = − = .
Now a general contact transformation of n2 1R +  (n  =  2 in our case) preserving the contact 

structure 0α =  and not involving change of t (i.e. preserving the planes t const.)=  is deter-
mined by a single map : n n→R R Rϕ ×  acting on {(x, t)} via

x
y
t

y
t

,x t

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ϕ
ϕ ϕ+! (5)

where x t,( )ϕ ϕ=  t0, 0( ( ) )ϕ = .

Theorem 2. No contact transformation, i.e. no map of the form (5), i.e. no substitution 
of the form x u t,( )ϕ=  can eliminate time-dependence in the terms of the order O( )ε  in the 
system (1).

A complete proof of this theorem is given at the end, but the gist can alternatively be seen 
as follows. Substitute (2) into (3); rather than going through tedious manipulations, let us sim-
ply consider all possible sources in (2) which contribute O( )ε -terms to (3) and see how they 

can cancel each other, as (3) implies they do. One such source is the cubic term SJẋ
4

3ε  in (2); 
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since S O˙ 1( )ε= − , two differentiations produce precisely one O( )ε  term: SJx¨ ˙
4

3ε . The only other 
source of O( )ε -terms is Sx

4

2ε , which after two differentiations contributes Sx2 ˙˙
4

2ε . This latter 
contribution could not have been canceled without the cubic term containing ẋ in (2), suggest-
ing that the latter term is indeed necessary.

3. A heuristic explanation of stability

For a fixed location x0, the force vector

F t S t x0 0( ) ( / )ε= − (6)

rotates counterclockwise with angular velocity 2 21ε ω=− . Were the force independent of x 
near x0, a non-drifting particle would have moved in a circle, with F0(t), the centripetal force, 
related to the radius vector r  =  x  −  x0 via F r x x2 42 2

0( ) ( / )( )ω ε= − = − − , so that

x x F x Sx
4 4

.0

2

0

2

0
ε ε= − = + (7)

Substituting this for x0 in (6) gives a better approximation for the force:

F t S x Sx Sx x
4 4

,1 0

2

0 0

2

0( ) ( )ε ε= − + = − − (8)

showing that in this approximation (improving on (6)) F1(t) describes a shifted circle, so that 
the average force (in this approximation) is

F t x
4

;1

2

0( ) ε= −

this is precisely the restoring force in (3).
To repeat the above in a different way, consider the force F S t x r t0( / )( ( ))ε= − +  changing 

with t, as r(t) travels in a small circle counterclockwise with the angular velocity 2/ε, so that 
the force

F S t x r t Sx Sr.0 0( / )( ( ))ε= − + = − −

The key point now is that the last term Sr is constant and points into the origin (thus explain-
ing the restoring force). Indeed, while r rotates counterclockwise, the time-dependence of S 
precisely cancels this rotation (according to the last remark in section 3). Thus the average 

F Sr r x0
4 0
2( )= − = − = − ε , reconfirming the earlier conclusion.

4. Rotating saddle in physical applications

Equation (1), as well as their autonomous version in the rotating frame, arise in numerous 
applications across many seemingly unrelated branches of classical and modern physics [6, 
7, 20]. In celestial mechanics the rotating saddle equations  describe linear stability of the 
 triangular Lagrange libration points L4 and L5 in the restricted circular three-body problem 
[22, 23]. For this reason the classical work by Gascheau of 1843 may be considered as the first 
one that established stability conditions for a particle on a rotating saddle [21, 24]. However, 
it was not until Brouwer, one of the authors of the fixed point theorem in topology, considered 
in 1918 stability of a heavy particle on a rotating slippery surface [1–3] that the rotating saddle 
trap per se became an object for investigation.
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Indeed, according to Earnshaw’s theorem an electrostatic potential cannot have stable 
equilibria, i.e. minima, since such potentials are harmonic functions. The theorem does not 
apply, however, if the potential depends on time; in fact, the 1989 Nobel Prize in physics 
was awarded to Paul [25] for his invention of the trap for suspending charged particles in an 
oscillating electric field. Paul’s idea was to stabilize the saddle by ‘vibrating’ the electrostatic 
field, by analogy with the so-called Stephenson–Kapitsa pendulum [17, 18, 26–29] in which 
the upside-down equilibrium is stabilized by vibration of the pivot. Brouwer [1, 2] explicitly 
demonstrated that, instead of vibration, the saddle can also be stabilized by rotation of the 
potential (in two dimensions). This effect is used, e.g. in quantum optics, in the theory of 
rotating radio-frequency ion traps [8] and for guiding electrons inside Bessel beams of an 
electromagnetic field [11].

In plasma physics equation (1) appear in the modeling of a stellatron—a high-current beta-
tron with stellarator fields used for accelerating electron beams in helical quadrupole magnetic 
fields [9, 19, 30, 31]. In atomic physics the stable triangular Lagrange points were produced in 
the Schrödinger–Lorentz atomic electron problem by applying a circularly polarized micro-
wave field rotating in synchrony with an electron wave packet in a Rydberg atom [22]. This 
has led to a first observation of a non-dispersing Bohr wave packet localized near the Lagrange 
point while circling the atomic nucleus indefinitely [32]. Recently, the rotating saddle equa-
tion  (1) reappeared in the study of confinement of massless Dirac particles, e.g. electrons 
in graphene [33]. Even stability of a rotating flow of a perfectly conducting ideal fluid in 
an azimuthal magnetic field possesses a mechanical analogy with the stability of Lagrange 
triangular equilibria and, consequently, with the gyroscopic stabilization on a rotating saddle 
[34]. Finally, we note that in mechanical engineering equation (1) describes stability of a mass 
mounted on a non-circular weightless rotating shaft subject to a constant axial compression 
force [5, 35].

5. Proofs

5.1. Proof of theorem 1

In an attempt to bring (1) to a normal form, let us choose a new variable x1
2R∈  via

x x S t x
4

.1

2

1( / )ε ε= + (9)

This transformation is suggested by the heuristic discussion in section 3. The transformation 
(9) converts (1) into

x SJx x Jx Sx O¨ ˙
4 4

˙
16

.1 1

2

1

3

1

4

1
5( )ε ε ε ε ε− + + − = (10)

Remark 2. The fact that the average S 0=  (a zero matrix) may suggest that the averaging 
of (10) may give

x x Jx O¨
4 4

˙ ;2

2

2

3

2
5( )ε ε ε+ + =

interestingly, this coincides with the correct result (3) except for the sign in front of the  Coriolis 
term.
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Proof of (10) goes by direct substitution, and we omit the details, pointing out only that 
the identities

S
t
S t SJ˙ d

d
2 1( / )ε ε= = − − (11)

and

S S¨ 4 2ε= − − (12)

should be used in the process.
We expect, according to theorem 2, that the transformations must involve both x and ẋ, and 

we therefore write (10) as a system

x y

y SJy x Jy Sx O

˙

˙
4 4 16

,

1 1

1 1

2

1

3

1

4

1
5( )

⎧
⎨⎪
⎩⎪ ε ε ε ε ε

=

= − − + +

or, more compactly as a system in 4R :

z A A t A A A O z˙ ,1 0 1
2

2
3

3
4

4
5

1( ( ) ( ))ε ε ε ε ε= + + + + + (13)

where

z
x
y A I A t

SJ
, 0

0 0
, 0 0

0
,1

1

1
0 1( )       ( )   ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= = = (14)

A
I

A
J

A
S

1
4

0 0
0

,
1
4

0 0
0

,
1

16
0 0

0
.2 3 4     ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= − = − = (15)

5.1.1. Averaging the εO( )-term. We seek to kill time-dependence in the O( )ε -term in (13) via 
the change of variables

z I T z T T t, ,1
2

1 2 1 1( )    ( / )ε ε= + = (16)

where T1( )τ  is a periodic 4 4×  matrix function of period π. Substituting this into (13) and using

I T I T T O ,2
1

1 2
1

4
1
2 6( ) ( )ε ε ε ε+ = − + +−

we obtain

z B B t B B B O z˙ ,2 0 1
2

2
3

3
4

4
5

2( ( ) ( ))ε ε ε ε ε= + + + + + (17)

where

B A B A T, ,0 0 1 1 1  = = − ′ (18)

and

B A A T
B A A T T T
B A A T T A T

,
,
, ,

2 2 0 1

3 3 1 1 1 1

4 4 2 1 1 0 1

[ ]
[ ]
[ ] [ ]

= +
= + +
= + −

′ (19)

with brackets denoting commutator of matrices. Note that according to our notation 

T t T t
t1

1 d
d 1

1( ) ( ( ))ε ε ε=′ − − , so that T t O 11
1( ) ( )ε =′ − . By setting

T
S

1
2

0 0
01 ⎜ ⎟

⎛
⎝

⎞
⎠= − (20)
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we get

B A T 0,1 1 1= − =′

as follows from (15) and (11). Substituting (20) into (19) we compute

B S
I

B
J

B
S

1
4

0 2
0

,
1
4

0 0
0

,
1

16
0 0

0
;2 3 4     ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= − = = − (21)

summarizing, our equation becomes

z B B t B B t O z˙ .2 0
2

2
3

3
4

4
5

2( ( ) ( ) ( ))ε ε ε ε= + + + + (22)

5.1.2. Averaging of the ε2-term. We now eliminate t from the B2(t) term in (22) by seeking 
the transformation

z I T z T T t, ,2
3

2 3 2 2( )    ( / )ε ε= + = (23)

where T2( )τ  is a matrix function periodic in τ of period π. Substitution of (23) into (17) gives 
the new system

z M z˙3 2 3=

where

M I T M I T I T T2
3

2
1

1
3

2
3

2
1 2

2( ) ( ) ( )ε ε ε ε= + + − + ′− − (24)

and M1 is the coefficient of z2 in (17). Note that we used the fact that T T2̇
1

2ε= ′− . Multiplying 
out (24) and collecting the like powers of ε we obtain

M A B T B A T B t O, ;2 0
2

2 2
3

3 0 2
4

4
5( )  ( [ ]) ( ) ( )ε ε ε ε= + − + + + +′ (25)

note that the 4ε -term was unaffected by the transformation. To kill the t-dependence in the 
2ε -term we choose T2 so as to turn B T2 2− ′  into the average of B2:

B T B
I

1
4

0 0
0

,2 2 2 ⎜ ⎟
⎛
⎝

⎞
⎠− = = −′ (26)

This condition, along with the requirement of periodicity, dictates the choice

T SJ1
4

0
0 0

.2 ⎜ ⎟
⎛
⎝

⎞
⎠= − (27)

Substituting this into (25) yields

M A B B B t O ,2 0
2

2
3

3
4

4
5( ) ( )ε ε ε ε= + + + +

where we used the fact that B A T B,3 0 2 3[ ]+ = , since T2 commutes with A0.

5.1.3. Reduction of the ε4-term. Note that the cubic term turned out to be time-independent, 
and thus we need to average the quartic term. To that end we subject the system

z M z˙3 2 3=

to the transformation

z I T z3
5

4 5( )ε= +

O Kirillov and M Levi Nonlinearity 30 (2017) 1109



1117

with the periodic matrix function T4 chosen so as to kill time dependence in B4(t)4. The matrix

M I T M I T I T T4
5

4
1

2
5

4
5

4
1 3

4( ) ( ) ( )ε ε ε ε= + + − + ′− −

of the transformed system differs from M2 only in the terms starting with 4ε :

M M T ,4 2
4

4ε= − ′

and thus we must choose T4 so as to kill the time-dependence in the coefficient of 4ε :

T B t
S

1
16

0 0
0

,4 4( ) ⎜ ⎟
⎛
⎝

⎞
⎠= = −′

or

T
SJ

1
32

0 0
0

.4 ⎜ ⎟
⎛
⎝

⎞
⎠= − (28)

Denoting z5  =  w, we obtain the averaged system

w A B B O w˙ ,0
2

2
3

3
5( ( ))ε ε ε= + + + (29)

or, explicitly,

t
u
v

I

I J
u
v O u

v
d
d

0

4 4
.2 3 5( ) ( ) ( )( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ε ε ε=

−
+ (30)

It follows that u satisfies

u Ju u O¨
4

˙
4

;
3 2

4( )ε ε ε− + = (31)

indeed, according to the first equation in (30)

u v O˙ ;5( )ε= +

differentiating this by t gives

u v O¨ ˙ 4( )ε= +

− note the drop in the power of ε due to differentiation (recall that td d d d1/ /ε τ= − ). Substituting 
v̇ from the second equation in (30) results in (31).

It remains to find the explicit form for the averaging transformation

z I T I T I T w.1
2

1
3

2
5

4( )( )( )ε ε ε= + + +

Expanding the product in the powers of ε, we write the transformation as

I T T O ;2
1

3
2

5( )ε ε ε+ + + (32)

substituting the expressions for T1 and T2 (see (20) and (27)) and reading off the first comp-
onent, we obtain (3), as claimed in the statement of theorem 1. ♢

5.2. Proof of theorem 2

We start with the system (13) which was obtained from the original system by a contact trans-
formation, and will show that the ε-term cannot be averaged by a contact transformation. In 
fact, it suffices to consider the transformation (16) since adding other powers of ε to I T2

1ε+  

4 We use the subscript 4 for consistency, noting that T3  =  0, i.e. that the identity transformation is needed for the 
cubic terms.
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will not affect the ε-term in the transformed system. Now T1, which is uniquely determined by 
(20), gives the transformation with the matrix

I T
I

I S

0

0
1
2

.2
1 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ε ε+ = − (33)

But any map of contact type has the matrix of the form

0
t

⎜ ⎟⎛
⎝

⎞
⎠

Φ
Φ Φ

where Φ is a matrix—this is just the linear version of (5) (we drop the t-variable since it is not 
transformed). And thus (33) is not of contact type. And adding other powers of ε to the matrix 
of the transformation (33) will not turn this transformation into one of contact type. This com-
pletes the proof of theorem 2. ♢

6. Conclusion

We showed that the rapid rotation of the symmetric saddle potential creates a weak Lorentz-
like, or a Coriolis-like force, in addition to an effective stabilizing potential—all in the inertial 
frame. As a result, the particle in the rotating saddle exhibits, in addition to oscillations caused 
by effective restoring force, a slow prograde precession caused by this pseudo-Coriolis effect. 
By finding a hodograph-like ‘guiding center’ transformation using the method of normal 
form, we found the effective equations of this precession that coincide with the equations of 
the Foucault’s pendulum [36].

An interesting open question is to find a more abstract geometrical point of view (assum-
ing one exists) from which the Coriolis-like force discussed here and geometric magnetism 
[37–39] are manifestations of the same effect.
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