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1. INTRODUCTION. Physics often provides mathematics not only with a problem,
but also with the idea of a solution. Physical reasoning has traditionally been a fruitful
source of mathematical invention, having played a key role in some of the main dis-
coveries of Archimedes, Bernoulli, and Riemann, among many others. In this article
we give a much more modest example of a mathematical result that the author has
discovered by means of a physical argument. We will also provide a one-paragraph
physical proof of Ceva’s theorem used in the discussion (and stated as Theorem 6).

Theorem 1. Let K be an arbitrary closed convex curve in the plane. Assume, more-
over, that the curvature of K is nonzero and finite at every point. From the set of all
triangles circumscribed around K consider a triangle �ABC of minimal perimeter.1

Then, referring to Figure 1, the following assertions hold:

1. the three perpendiculars to the sides of �ABC at the tangency points are con-
current;

2. the three segments connecting a vertex of �ABC with the tangency point on the
opposite side of �ABC are concurrent; equivalently, by Ceva’s theorem,

a1b1c1 = a2b2c2, (1)

where a1 and a2 are the lengths of the segments into which the tangency point
divides the side opposite the vertex A, and similarly for b and c.

Remark. After this manuscript was completed, Serge Tabachnikov pointed out to me
that L. F. Toth in his book [4] has studied polygons of minimal perimeters circum-
scribed around a closed curve. One of Toth’s theorems implies, modulo some addi-
tional remarks, statement (2) of Theorem 1. The concurrency of normals in statement
(1) turns out to be a much more general fact—it holds for “almost” all functions of
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Figure 1. �ABC is a minimal perimeter triangle around K .

1“Minimal” can be replaced by “critical.”
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the triangles, not just the perimeters. For instance, concurrency of normals holds for
circumscribed triangles minimizing any of the following: (i) the area; (ii) the sum of
the squares a2 + b2 + c2 of the side-lengths; (iii) any sum f (a) + g(b) + h(c), where
f , g, and h are arbitrary monotone increasing functions. In fact, much more generally,
we have:

Theorem 2. Let E = E(a, b, c) be an aribtrary smooth function of the lengths a,
b, and c of the sides of a triangle, and let E satisfy the nondegeneracy assump-
tion d/dλE(λa, λb, λc)|λ=1 ≡ ∇E · 〈a, b, c〉 �= 0.2 If �ABC minimizes E among all
triangles circumscribed around a given closed strictly convex smooth curve K , then
the normals to the sides of �ABC at the points of tangency with K are concurrent.

We mention a few books where physical proofs for other mathematical theorems
can be found. A reproduction of Archimedes’ discovery of the integral calculus by
using mechanics can be found, along with other examples, in chapter 9 of Polya’s
book [3]. Additional proofs based on mechanics can be found in very nice booklets by
Uspenskii [5] and Kogan [2].

2. A PHYSICAL “PROOF.” Given a closed convex curve K , we will introduce a
mechanical system whose potential energy equals the perimeter of a circumscribed
triangle. For such a system

minimal energy ⇔ minimal perimeter ⇒ equilibrium;
the equilibrium condition, properly restated, will give us the conclusion of Theorem 1.
The proof of Theorem 2 essentially reduces to the proof of Theorem 1 once the perime-
ter is replaced with the more general function E in the formulation of Theorem 2.

We describe the mechanical system and then immediately give a proof of the theo-
rem based on the physics of the equilibrium configuration.

Constant tension springs. We will use constant tension springs, i.e., “rubber bands”
whose tension is independent of the elongation. Such a spring, depicted in Figure 2,
can be realized by creating a vacuum inside a cylinder closed at one end, with a fric-
tionless piston separating the vacuum from the surrounding atmosphere. For conve-
nience we use springs with tension T = 1: the potential energy of such a spring equals
its length.

Piston

vacuum

Figure 2. The constant tension spring.

The mechanical system. Consider three (infinite) rods with each pair of rods slipped
through a small ring and forming a triangle �ABC , as shown in Figure 3. The rods
are in frictionless contact with the rings, and thus can form a triangle of any shape,
except for the constraint we now impose: �ABC must contain the curve K in its in-
terior, i.e., K is an obstacle impenetrable to the rods. Now let us connect each pair of

2This excludes functions E of the angles alone.
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Figure 3. The “springs and rings” system.

rings by a constant tension spring, so that each spring runs along a side of �ABC ,
as shown in Figure 3. We have thus built an “analog computer” that will seek out the
minimal perimeter triangle. The springs are trying to collapse �ABC , but the obstacle
K prevents such collapse. The potential energy of our mechanical system is precisely
the perimeter of the triangle formed by the rods. If the perimeter of �ABC is min-
imal, then so is the energy of our mechanical system, which is thus in equilibrium.
Restating the equilibrium condition results in a physical proof of Theorem 1, as fol-
lows.

Physical proof of Theorem 1, part (1). Consider the three rods with their rings and
springs as one system, subject to three normal reaction forces from K at tangency
points. If �ABC has minimal perimeter, then it is in equilibrium, and thus the sum
of torques of these forces with respect to any point vanishes. In particular, it vanishes
with respect to the point O of intersection of the lines of two of the forces. Thus the
line of the third force must also pass through O .

Physical proof of Theorem 1, part (2). It suffices to prove that a1b1c1 = a2b2c2, as in
equation (1). By Ceva’s theorem (see [1]), the three segments of concern in the the-
orem (called the Cevians) must then be concurrent. We now derive the equilibrium
conditions for the rods, which give the desired identity at once.

Consider a minimal perimeter �ABC . Each rod is subject to the three normal reac-
tion forces shown in Figure 3 (top left): one force from K and one from each of the two
rings that are in contact with the rod. Consider one of the rods, say AB. The normal
reaction force from the ring A upon the rod is cot α, where α = 1/2� A. Indeed, since
all forces acting on the ring A are in balance, we have NA cos(π/2 − α) = cos α, as
in Figure 3 (top right). Here NA is the magnitude of the force exerted by the rod upon
the ring A. Since action equals reaction, NA is also the force of the ring upon the rod.3

Similarly, the rings B and C exert forces cot β and cot γ , respectively, upon the rods
they touch, where β = 1/2� B and γ = 1/2� C . The zero torque conditions for the
three rods, with respect to their points of contact with K , are:

3In fact, it is the force upon both rods AB and AC at the points of contact with the ring A.

892 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 109






c1 cot α = c2 cot β,

a1 cot β = a2 cot γ,

b1 cot γ = b2 cot α.

(2)

Multiplying the equations in (2), we get a1b1c1 = a2b2c2.

3. PROOF OF THEOREM 1.

A lemma on variation of the perimeter. We first derive the formula for the derivative
of the perimeter of a circumscribed triangle. Let �ABC be an arbitrary (not necessar-
ily minimal) triangle circumscribed around K . We fix two of the straight lines AB and
AC and vary the third line BC , parametrizing its point r = r(s) of tangency by the
counterclockwise arclength s measured along K from a chosen point (Figure 4).
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Figure 4. Differentiation of the perimeter.

Lemma 1. In the notation of Figure 4 and with |�ABC | signifying the perimeter, it is
the case that

d

ds
(|�ABC |) = (a1 cot β − a2 cot γ )k, (3)

where β = β(s) = 1/2� B, γ = γ (s) = 1/2� C, and k = k(s) is the curvature of K at
r(s).

Proof. As s varies, the only relevant segment lengths varying are c2, a1, a2, and b1, as
depicted in Figure 4. The point B lies on two tangent lines to K and hence

r(s) − a1ṙ(s) = rC + c2vC ,

where rC is the constant point of tangency of K with the side AB and vC is the constant
unit tangent vector to K at that point. Differentiation with respect to s gives

ṙ − a1r̈ − ȧ1ṙ = ċ2vC . (4)

We note that |ṙ| = 1 and r̈ = kn, where n is the unit inward normal vector to K and k
is the curvature of K . Projecting each side of (4) first onto n and then onto ṙ yields
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−ka1 = ċ2vC · n, 1 − ȧ1 = ċ2vC · ṙ.

Since vC · n = − sin � B and vC · ṙ = − cos � B, we obtain ċ2 = ka1/sin � B and ȧ1 =
1 + ċ2 cos � B = 1 + ka1 cot � B. Addition gives

d

ds
(c2 + a1) = 1 + ka1

(
1

sin � B
+ cot � B

)
= 1 + ka1 cot β,

with β = 1/2� B. Similarly we obtain (note the minus sign)

d

ds
(a2 + b1) = −(1 + ka2 cot γ ).

Adding the last two equations delivers (3):

d

ds
(|�ABC |) = d

ds
(c2 + a1 + a2 + b1) = (a1 cot β − a2 cot γ )k.

Proof of Theorem 1, part (2). Let �ABC be a triangle of minimal perimeter cir-
cumscribing K . Allowing the line BC to vary with s as in Figure 4, we have
d/ds(|�ABC |)|s=s0 = 0, where s0 is the value of s corresponding to the minimal
perimeter. Using (3) we conclude that, in the minimizing configuration,

a1 cot β = a2 cot γ. (5)

Cyclic permutations of this relation give{
b1 cot γ = b2 cot α,

c1 cot α = c2 cot β.
(6)

Multiplication of the equations in (5) and (6) then leads to the desired equation (1).

4. PROOF OF THEOREM 2.

The idea of the proof. Let O be the point of intersection of the normals to the sides
at the tangency points TB and TC (Figure 5). Let us imagine the curve K rotating
with unit angular velocity around O , with the triangle undergoing dilation in order
to maintain tangency with the curve. We take the moving triangle to coincide with
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Figure 5. Proof of concurrence of normals.
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�ABC at t = 0. If PA �= TA, where PA is the foot of the perpendicular from O to BC
(as shown in Figure 5), then the triangle has to dilate with nonzero speed to remain
tangent to K . This is intuitively obvious but will be proved later. Thus the quantity E
changes with nonzero speed, a contradiction. We now make this argument rigorous.

Differentiation with respect to rotations. Instead of rotating the triangle, we will
rotate the curve K . Fix an arbitrary point O (later to be chosen as the intersection of
two perpendiculars, as described in the previous paragraph). Consider the rotated curve
Kθ = Rθ K , where Rθ is the counterclockwise rotation through the angle θ around O .
Fix unit vectors vA, vB , and vC and consider �ABCθ circumscribed around Kθ and
having sides parallel to vA, vB , and vC , respectively (Figure 6).4 The rate at which
�ABCθ dilates with changing θ is given by the following lemma.
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Figure 6. Proof of the lemma on the rate of dilation.

Lemma 2. The sides a, b, and c of �ABCθ depend on θ in such a way that

d

dθ
〈a, b, c〉 = λ〈a, b, c〉, (7)

where, referring to Figure 6,

λ = −
(

rA · vA

h A
+ rB · vB

hB
+ rC · vC

hC

)
. (8)

Here rA is the position vector (relative to O) of the tangency point of the side BC, and
the vectors rB and rC are defined similarly. In other words, as the curve rotates, the
triangle undergoes the instantaneous dilation at the exponential rate λ.

Remark. The expression λ is independent of the choice of O . Indeed, letting A =
area(�ABC), we substitute h A = 2A/a, hB = 2A/b, and hC = 2A/c into (8) ob-
taining λ = −(rA · a + rB · b + rC · c)/2A, where a, b, and c are vectors that rep-
resent the sides of �ABC in the orientation suggested by Figure 6. Moving O to a
new center O ′ = O + k results in the new λ′ = λ + 1

2A k · (a + b + c) = λ (because

4There are actually two such triangles for each θ ; we choose the one whose vertices A, B, and C occur
counterclockwise.
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a + b + c = 0), as claimed. We postpone the proof of Lemma 2, first applying it to
complete the proof of Theorem 2.

Proof of Theorem 2. Let �ABC minimize E(a, b, c) over all triangles that circum-
scribe K . Let the center of rotation O be the intersection of normals at tangency points
TB and TC (see Figure 5). With O thus specified, consider �ABCθ as defined in the
foregoing discussion. Using equation (7), we obtain from the minimality of E for the
given triangle:

0 = d

dθ
E(a, b, c)|θ=0 = λ∇E · 〈a, b, c〉. (9)

We conclude that λ = 0, for the dot product does not vanish because of the nondegen-
eracy assumption on E . Now λ is given by (8), where the last two terms vanish by our
choice of O; hence, (rA · vA)/h A = 0.

Proof of Lemma 2. First let us consider the family of all triangles (unrelated to K )
with sides parallel to vA, vB , and vC , and treat the distances x, y, and z from O to the
sides of �ABC as independent variables, so that each of the side-lengths a, b, and c
is a function of x , y and z (Figure 7).5 Since all the triangles in this family are similar,
regardless of the choice of x , y, and z, we note that the ratio a(x, y, z)/h A(x, y, z) is
constant. Logarithmic differentiation with respect to x gives

1

a

∂a

∂x
= 1

h A

∂h A

∂x
.

Since ∂h A/∂x = 1, we get

1
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vA

A

B
C

hA

Figure 7. Triangles parametrized by x , y, and z.

5To be more precise, each of the quantities x , y, and z is the directed distance from O to the corresponding
side of �ABC in the direction of the outward normal. If O happens to lie outside �ABC , then one or two of
the distances x , y, and z will be negative.
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Similarly, logarithmic differentiation with respect to x of the constants b/h A and c/h A

gives

1

b

∂b

∂x
= 1

h A
and

1

c

∂c

∂x
= 1

h A
,

whence

∂

∂x
〈a, b, c〉 = 1

h A
〈a, b, c〉. (10)

Similarly

∂

∂y
〈a, b, c〉 = 1

hB
〈a, b, c〉, ∂

∂z
〈a, b, c〉 = 1

hC
〈a, b, c〉. (11)

Now restrict attention to the triangles �ABCθ circumscribed around Kθ . Then x, y,
and z all depend on a single variable θ , and from Lemma 3 (to follow) we obtain

dx

dθ
= −rA · vA,

dy

dθ
= −rB · vB,

dz

dθ
= −rC · vC . (12)

Using the chain rule, we infer from (10), (11), and (12) that

d

dθ
〈a, b, c〉 = ∂

∂x
〈a, b, c〉dx

dθ
+ ∂

∂y
〈a, b, c〉dy

dθ
+ ∂

∂z
〈a, b, c〉 dz

dθ
= λ〈a, b, c〉,

with λ = −(rA · vA/h A + rB · vB/hB + rC · vC/hC).

In the course of the preceding proof we made appeal to Lemma 3. Here is the result
in question.

Lemma 3. Consider the curve Kθ obtained by rotating K through the angle θ around
a given point O (Figure 8). Let v be a fixed unit vector in the plane, and consider the
distance x(θ) from O to a tangent line to Kθ in the direction of v. Then

x ′(0) = −r(s0) · v, (13)

where s0 is such that r′(s0) = v.

Proof. We have

x(θ) = (Rθ r(sθ )) · n, (14)

v

θ

n

x(θ)

R  K

K

θ

O

r(s )0

r(s )θ

Figure 8. The distance to a rotating curve.
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where sθ is defined by the parallel tangent condition Rθ r′(sθ ) = v and n = Rπ/2v is
the unit vector normal to v. The parallel tangent condition, rewritten as

Rθ r′(sθ ) · n = 0,

defines sθ as a smooth function of θ for θ near 0 (This is actually true for all θ ,
but we do not need that information). This is geometrically obvious; more formally,
the equation f (s, θ) ≡ Rθ r′(s) · n = 0 defines s as a function of θ since the condi-
tions of the implicit function theorem hold: f (s0, 0) = 0 by the definition of s0 and
∂/∂s f (s0, 0) = r′′(s0) · n = k(s0)n · n = k(s0) �= 0. In particular, sθ is a smooth func-
tion of θ .

Differentiating (14) at θ = 0, we obtain

x ′(0) = d

dθ
(Rθ r(s0))|θ=0 · n + dsθ

dθ
|θ=0r′(s0) · n = R π

2
r · n = −r · v,

where we have used d/dθ Rθ |θ=0 = Rπ/2, r′(s0) · n ≡ v · n = 0, and R−1
π/2n = −v. This

establishes (13).

5. A PHYSICAL PROOF OF CEVA’S THEOREM We refer to [1] for a nice treat-
ment of Ceva’s theorem and for further references. Here our goal is to give a physical
“proof.”

Theorem 3 (Ceva’s theorem and its converse). Given a triangle �ABC, consider
three segments AA1, B B1, and CC1, where A1, B1, and C1 divide the sides opposite
the vertices A, B, and C into lengths denoted by a1 and a2, b1 and b2, and c1 and c2,
respectively (labeled as in Figure 9). The three segments are concurrent if and only if
a1b1c1 = a2b2c2.
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Figure 9. Ceva’s theorem by mechanics.

Proof. Assume that the three segments AA1, B B1, and CC1 shown in Figure 9 share
a common point P . Let us endow the vertices A, B, and C with masses m A, m B , and
mC , chosen so that their center of mass (c.m.) lies at P . (To that end, first choose
m B = a2 and mC = a1, thereby placing c.m.(B, C) at A1. Then choose m A to ensure
that c.m.(A, A1) = P by setting m A = t (m B + mC), where t is the ratio of the length
of P A1 to the length of AP .)
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To complete the proof of the necessity part of the theorem, it remains to observe
that A1, B1, and C1 are the centers of mass of their respective sides. Indeed, the center
of mass of three point masses lies on the line through one mass and the center of mass
of the other two. In particular, the line through A and c.m.(B, C) contains P . But line
AA1 contains P as well; hence A1 = c.m.(B, C). The same argument holds for the
other two sides.

Since A1 = c.m.(B, C), B1 = c.m.(C, A), and C1 = c.m.(A, B), we obtain

m Ba1 = mCa2, mCb1 = m Ab2, m Ac1 = m Bc2.

Multiplying these three equations we obtain the desired identity (1).
The converse (that relation (1) implies concurrency) is easily proved by contra-

diction, as in [1]. Given that equation (1) holds, we assume that one of the pertinent
segments, say CC1, does not pass through the intersection of the other two. A differ-
ent segment CC̃1 with C̃ on AB but C̃ �= C does pass through the intersection, and
the last identity applies: a1b1c̃1 = a2b2c̃2. But this is in contradiction with (1), since
c̃2/c̃1 �= c2/c1. The proof is complete.
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