Geometric Sum, Geometrically

I_{t} is customary to prove the 1 geometric sum formula
$1+\lambda+\lambda^{2}+\ldots+\lambda^{n-1}=\frac{1-\lambda^{n}}{1-\lambda}$
(1)
by algebra. But a geometric sum deserves a geometric treatment, so here are some geometrical proofs.

Proof by Dilation

Let us subject the segment $[0,1]$ to linear dilation $x \mapsto \lambda x$ that is repeated n times-as shown in Figure 1-for positive $\lambda<1$. The iterates $\lambda, \ldots, \lambda^{n}$ break $[0,1]$ into $n+1$ subintervals. And the iterates of the rightmost inter val $[\lambda, 1]$ have geometrically decreasing lengths $\lambda^{i}(1-\lambda)$ with $i=0, \ldots, n-1$, as Figure 1 shows. The combined length of all the intervals, recording from right to left in the figure, is 1 :

$$
\begin{gathered}
(1-\lambda)+\lambda(1-\lambda)+\ldots+ \\
\lambda^{n-1}(1-\lambda)+\lambda^{n}=1
\end{gathered}
$$

thus resulting in (1)

Figure 2. The length of the hypotenuse computed in two different ways yields (3)

$$
\begin{equation*}
1+\sin ^{2} \theta+\sin ^{4} \theta+\ldots=\frac{1}{\cos ^{2} \theta} \tag{3}
\end{equation*}
$$

This implies (2) by choosing θ so that $\lambda=\sin ^{2} \theta$, and by application of the Pythagorean theorem. As MATHEMATICAL a curiosity, reversing the (2) CURIOSITIES for granted-gives an admitBy Mark Levi tedly strange proof of the Pythagorean theorem.

A Staircase Proof

The two lines $y=1+\lambda x$ and $y=x$, which appear in Figure 1, intersect at height $y=\frac{1}{1-\lambda}$. But this height is also the sum of rises that form a geometric sequence $1, \lambda$, λ^{2}, \ldots, again yielding (2).

The figures in this article were provided by the author.

The remaining two proofs are for the infinite sum

$$
\begin{equation*}
1+\lambda+\lambda^{2}+\ldots=\frac{1}{1-\lambda} \tag{2}
\end{equation*}
$$

and positive $\lambda<1$.

A Pythagorean Proof

The construction of Figure 2 yields a partition of the hypotenuse into an infinite union of segments of lengths $1, \sin ^{2} \theta, \sin ^{4} \theta, \ldots$ On the other hand, the hypotenuse has length $(1 / \cos \theta) / \cos \theta=\cos ^{-2} \theta$, so that
fessor of mathematics at the Pennsylvania State University.

