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Abstract

The main point of this paper is an observation that behind the standard averaging procedure there lies some simple previously
unobserved geometry. In particular, the averaged forces in a rapidly forced system are, as it turns out, the constraint forces of an
associated auxiliary non-holonomic system. The curvature of these constraints enters the expression for the averaged system.
For example, the curvature of the pursuit curve enters the averaged equation of the pendulum with vibrating suspension point.
This observation gives a new physical and geometrical insight into the mechanics of the Paul traps and the stability of forced
inverted pendula. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

This note contains a new observation on the well-studied problem of Hamiltonian systems with rapid time-
dependence.

This observation gives a new insight into the methods of confinement of charged particles such as the Paul
trap [1,2], Fig. 1. As a side remark, a very simple physical explanation of stability of the inverted pendulum with
vertically vibrating suspension is given.

The recent discovery of stableπ -kinks in rapidly forced sine-Gordon equations [3] is based on the same idea.

1.1. The paper’s outline and related applications

Plan of the paper. In Section 2, we state the main theorem and its corollaries for two particular cases: the unit
force field, where the averaging theory gives a purely geometrical answer, and for potential fields which arise in
most applications.

In Section 3, we discuss applications (A) to the Paul trap; (B) to the forced multiple pendulum (with a brief deriva-
tion of the averaged Lagrangian formulation, slightly more general than Theorem 2); (C) to the single pendulum,
(D) to Hill’s equation and finally (E) to composition of non-commuting symplectic matrices.
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Fig. 1. Schematics of the Paul trap.

Section 4 contains an informal ‘proof’ of Theorem 1; a proof is given in Section 5.
We conclude this introduction with the mention of physical manifestations of the phenomenon analyzed in this

note.
Early history. The stabilizing effect of vibrations has been known as early as 1908 through Stephenson’s [4]

experimental demonstration of stability of an inverted pendulum with the vertically oscillating suspension. Somewhat
later, in 1928, van der Pol and Strutt [5] have drawn the stability diagram for the Mathieu’s equation. This diagram
implies, among other facts, Stephenson’s result. In 1951, Kapitsa [6,7] studied stability of the inverted pendulum
through effective potentials [8] and had also suggested to apply vibrational stabilization to mechanical objects other
than pendula, such as large molecules.

The Paul trap. The related idea of levitating charged particles via an oscillating electric field (the ‘Paul trap’)
goes back to 1958 [1,9]; for this work Paul was awarded the Nobel Prize in 1989. See also [2,10,11]. The Paul
trap consists of three electrodes: a ring and two endcaps, Fig. 1. The endcaps are grounded, while a time–periodic
potential is applied to the ring. Since the electrostatic potential is a harmonic function, it has no minima, and
thus no stable equilibria are possible in an electrostatic field. The remarkable fact is that the net effect of the high
frequency vibrations is to create a minimum for theeffectivepotential [8]. This paper gives a new explanation of the
stabilization mechanism in the Paul trap. The standard explanation (or rather calculation) of stability [9] is based
on linearizing near the equilibrium and on verifying that the resulting Mathieu-type linear system is stable.

Strong focusing in synchrotrons. The discovery of the Paul trap was preceded by the idea of strong focusing in
synchrotrons. This idea, patented by Christofilos [12], was rediscovered by Courant, Livingston, Snyder and Blewett
[13] (who suggested the term ‘strong focusing’) in 1952, see [14]. Strong focusing of particles in synchrotrons is
accomplished by placing a series of closely spaced magnetic lenses in the path of the beam of particles. The lenses
are alternately focusing and defocusing in one of the transversal directions; the average effect of this alternation is
the focusing in both transversal directions. Here the space variation plays the role of rapid time-dependence in the
Paul trap.

Dipoles with spins. We mention in this connection the beautiful theory of the motion of a magnetic dipole
possessing the mechanical angular momentum in a magnetic field, see [15–20] and references therein. Averaging
over rapid rotations of such a dipole produces an additional Lorentz-type force as well as an effective electrostatic
force, see [15]. The latter force can be interpreted in terms of curvature; this will be shown in a future publication. The
Lorentz force mentioned above is partly responsible for stability of the ‘LevitronTM’ – a magnetic top which hovers
for several minutes, when spun properly, over another constant magnet. For stability analysis of the ‘LevitronTM’,
we refer to recent papers [19–21].
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2. A theorem on averaging and its corollaries

In this paper, we consider the motion of a particlexxx ∈ RRRn subject to a time-dependent force field of special form:

ẍxx = a(t, ε)fff (xxx); (1)

we assume the scalar ‘acceleration’a to be rapidly oscillating:

a(t, ε) = εαA

(
t

ε

)
, with α > −2 (2)

whereA(τ + 1) = A(τ) = O(1) andε � 1. We note that
• the acceleration is allowed to be very large, but
• the ‘displacement’s(t, ε) must be small:

s(t, ε) =
∫ t

t0

∫ τ

τ0

(a(s) − 〈a〉) ds dτ ∼ ε2+α � 1; (3)

heret0, τ0 are chosen so that the integral is a periodic function with zero average.
We are thus dealing with high-frequency violent vibrations. Throughout the paper, we assume thatfff is real

analytic (CCC5 actually suffices).

Theorem 1. Under the scaling assumption(2), the system(1) reduces to the averaged equation

ẌXX = 〈a〉fff (XXX) − 〈v2〉f ′f ′f ′(XXX)fff (XXX) + EEE, (4)

where1

v =
∫ t

t0

(a − 〈a〉) dt, 〈v〉 = 0 (5)

and where|EEE| ≤ Mε3+5α/2, via the transformationx = X + s(t, ε)f (X) + · · · , wheres was defined in Eq.(3);
the remaining terms of the transformation are given in the proof of the theorem(Section5.3).

We note thatfff ′fff has the interpretation of the acceleration of the particle moving in the velocity fieldfff . Eq. (4)
has several interesting physical implications which are explored below.

Proof of the theorem is given in Section 5; alternatively, one can obtain the proof from a similar result for the
first order systems, cf. the book by Bogoliubov and Mitropolski [22]. We have made no attempt to generalize this
theorem; on the contrary, the simplest nontrivial case (1) was chosen to demonstrate the phenomenon in the clearest
possible way.

2.1. An application to unit vectorfields

In this case, the geometry becomes particularly transparent:

Corollary 1 (The unit vectorfield).If |fff (xxx)| ≡ 1, then Eq.(4) becomes

ẌXX = 〈a〉fff (XXX) − k〈v2〉nnn + EEE, (6)

wherennn(xxx) is the principal unit normal vector to the integral curve offff at xxx and wherek(xxx) is the curvature of
this curve. EEE satisfies the same estimate as above.

1 fff ′(XXX) denotes the Jacobiann × n matrix of partial derivatives. In the solid mechanics literature, the expressionf ′ff ′ff ′f , called the convective
derivative, is written as(fff · ∇)fff .
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Observe thatkv2nnn is precisely the average centrifugal force acting on a bead of unit mass sliding along a curve
of curvaturek with speedv.

Proof of the corollary follows at once from Eq. (4) by application of

Lemma 1. In a vector field of unit vectors:|fff (xxx)| = 1, ∀xxx, the curvaturek = k(xxx) and the principal unit normal
nnn = nnn(xxx) to the integral line throughxxx are given by

knnn = f ′ff ′ff ′f ≡ (fff · ∇)fff . (7)

Proof of Lemma 1. Let xxx = xxx(s) be an integral curve: dxxx(s)/ds = fff (xxx(s)); since|fff | ≡ 1, s is the arc length
parameter. Thus

knnn = d2xxx

ds2
= d

ds
fff (xxx(s)) = f ′f ′f ′(xxx)fff (xxx).

This completes the proof of the lemma and of Corollary 1. �

In the special casexxx ∈ RRR2, the last corollary can be restated as follows:

Corollary 2. For the unit vectorfield inRRR2, the averaged truncated equations take the form

ẌXX = 〈a〉fff (XXX) − 〈v2〉 curlfff · nnn, (8)

where curl denotes the2-dimensional (scalar) curl.

This follows from

Lemma 2. The curvaturek(xxx) of trajectories of a unit vectorfieldfff (xxx) ≡ 1 in RRR2 coincides with the (scalar) curl:

curlfff (xxx) = k(xxx), (9)

where the sign ofk is decided by the definition of the curvature:k = dθ/ds, with the direction of increasings given
byfff .

Proof of Lemma 2. By the definition, the curl in 2D is the sum of the angular velocities of two infinitesimal
segmentsA andB orthogonal to each other atxxx as these segments are carried with the flow: curlfff = ω(A)+ω(B).
Take one of these segmentsA to be tangent to the trajectory atxxx, so thatB ⊥ A atxxx at the initial instant, and let
both A andB be carried along with the flow. Note thatω(A) = k by the definition of the curvature: indeed,A

remains tangent to the orbit for allt as it is carried with the flow with the speed|fff | = 1. On the other hand, we have
ω(B) = 0 att = 0 sincefff ⊥ B and since|fff | = const. We conclude thatω(A) + ω(B) = k + 0 = k, Q.E.D. �

2.2. An application to potential fields

If the force field is potential, such as in the Paul trap, then the effective force is also potential:

Theorem 2(Potential force).If fff = −∇V (xxx) in Eq. (1)2 so that the latter becomes

ẍxx = −a∇V, (10)

2 We use the notationsV ′(xxx) ≡ ∇(xxx) interchangeably.



154 M. Levi / Physica D 132 (1999) 150–164

then the averaged Eq.(4) becomes, assuming for simplicity〈a〉 = 0:

ẌXX = −〈v2〉∇W + EEE, where W = 1
2fff

2 = 1
2(∇V )2. (11)

Proof of Theorem 2. f ′ff ′ff ′f = 1
2(fff 2)′ ≡ ∇W , Q.E.D. �

Remark. According to this theorem, every isolated equilibrium inV is a minimum ofW . Every isolated equilibrium
of the original potential system is thus stabilized in the sense that every such equilibrium point lies in a well of a
time-independent potentialW , and in addition is a subject to a rapidly oscillating perturbation forceEEE. Note that
this force is indeed small compared to the leading term in Eq.(11): |EEE| ≈ ε1+(α/2)〈v2〉 � 〈v2〉. The net effect is
the attraction towards the equilibrium.

According to Earnshaw’s theorem, stable equilibrium of a rigid object made of charges and masses cannot
be achieved in a static field with a harmonic potential, such as any combination of electrostatic, magnetic and
gravitational fields. One sees thus that such stabilization becomes possible, as in the Paul trap, if the field oscillates.

Error bounds and stability. The above discussion leaves open the question of stability of Eq. (11) for all time.
In fact, such stability is virtually certain to be violated due to Arnold diffusion. For the case ofn = 1, the proof
of stability for all time depends on the verification of the assumptions of the KAM theory. By now there is a
considerable literature dealing with such questions, see [23] and references therein. Using the methods developed
there, one can prove stability under some mild additional assumptions onV .

We now return to the general casen ≥ 1. LetXXX andX̄XX be the solutions of Eq. (11) and of the truncated equation
respectively, sharing the same initial condition. The errorXXX − X̄XX remains small for time O(ε−α/2), as follows from
results in [24] applied to the system in Section 5. Forα < 0 (‘violent’ vibration) this time is short and such estimates
are of little use. Nevertheless, one can still obtain physically useful estimates on the energy for longer time intervals.
Take, to be specific, the case ofα = −1 so that

EEE = O(
√

ε) ≡ √
εGGG

(
xxx, ẋxx,

t

ε
, ε

)
, (12)

whereGGG is bounded when its arguments are.

Theorem 3. Fix initial conditionsxxx0, ẋxx0, and letxxx be the solution of Eq.(11). Consider the case3 of α = −1.
There exist positive constantsε0 andK independent ofε such that the ‘energy’

H = 1
2(ẋxx − v(t)fff (xxx))2 + W(xxx)

satisfies

|H(t) −H(0)| ≤ √
εKt + Kε, f or |t | <

1

K
√

ε
. (13)

This estimate shows that the particle spends a long time in the well of the effective potentialW .

Proof of the Theorem 3. Let XXX be the solution of the equivalent system (11) which corresponds toxxx via trans-
formations of Section 5. As long as(XXX,ẊXX) stays in a compact set ofRRR2n, we havexxx = XXX + O(ε) and ẋxx =
ẊXX + v(t)fff (XXX) + O(ε); here|O(ε)| < cε, with c depending on the compact set mentioned above and independent
of ε.

3 for simplicity; the general case goes verbatim.
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To the solutionXXX, we associate the energyH(t) ≡ H(XXX,ẊXX) = (1/2)ẊXX
2 + 〈v2〉W(XXX); according to the above,

we have

H(xxx, ẋxx, t) = H(XXX,ẊXX) + O(ε),

with |O(ε)| < cε, and the theorem follows from the estimate (14) below. This completes the proof of the theorem
modulo the following lemma. �

Lemma 3. Fix the initial condition(XXX0, ẊXX0) and consider the corresponding solution of Eq.(11),where we take
α = −1.There exist positive constantsε0 andK independent ofε such thatH(t) ≡ H(XXX,ẊXX) = (ẊXX/2)+〈v2〉W(XXX)

satisfies

|H(t) − H(0)| ≤ √
εKt, f or |t | <

1

K
√

ε
(14)

for any0 < ε < ε0.

Proof of Lemma 3. LetXXX be the solution of Eq. (11) with the initial data(XXX0, ẊXX0). Let t∗ > 0 be the first moment
when|H(t∗) − H(0)| = 1. For all t in the interval 0≤ t ≤ t∗, we have|H(t)| ≤ |H(0)| + 1 ≡ H1, implying
|ẊXX| <

√
2H1. DifferentiatingH and using first Eq. (11), then Eq. (12) and finally the last bound on|ẊXX| yields

|Ḣ | = |ẊXX(ẌXX + 〈v2〉∇W)| = |√εẊXXGGG| <
√

ε
√

2H1GM ≡ √
εK,

whereGM is the bound onGGG over the set{(XXX,ẊXX) ∈ RRR2n : H ≤ H1}. We conclude that|H(t)−H(0)| ≤ K
√

εt for
all 0 ≤ t ≤ t∗; it remains to show thatt∗ = O(1/

√
ε). The definition oft∗ implies 1= |H(t∗) − H(0)| ≤ √

εKt∗

(the last inequality was just proven), givingt∗ ≥ 1/K
√

ε. This completes the proof of the lemma and thus of
Theorem 3. �

It should be mentioned that the main theorem and the above estimates can be strengthened by averaging the
higher order terms; we do not do this here. Finally, we mention that to prove stability of thelinearizationof system
(11), one must verify the parametric nonresonance conditions in the limit of smallε. This question is not addressed
here.

3. Applications

3.1. The Paul trap

The particle in the Paul trap is governed by Eq. (10), wherea is proportional toqV ; hereq is the charge and
V (x) is the electrostatic potential in the cavity created by unit voltage difference between the electrodes, Fig. 1.

We now give a heuristic explanation of stabilization. Consider a charged particle in the field of the Paul trap, as
in Fig. 1. A more detailed view shown in Fig. 2 suggests that the particle tends to drift, due to its inertia, in the
direction of the convexity of the curve. Since the convexity is towards the saddle point, so is the direction of the
drift (Fig. 1). This intuitive stabilization argument is not complete: it does not explain why the saddle attracts from
everydirection. A precise geometrical explanation of this effect is given in [25].

3.2. Double pendulum

The additional equilibria. Consider the double pendulum whose suspension point undergoes periodic verti-
cal oscillations. The equations of motion are in the form slightly more general than Eq. (1). They come from
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Fig. 2. The particle drift is governed by curvature.

the Lagrangian

L(xxx, ẋxx, t) = 1
2〈AAA(xxx)ẋxx, ẋxx〉 − a

(
t

ε

)
V (xxx), (15)

whereAAA is a positive definite symmetric matrix, withxxx = (θ1, θ2), hereθ1 andθ2 are the deflection angles from
the vertical, and where〈·, ·〉 denotes the dot product. Herea = −g+acceleration of the suspension point; assuming
the latter to be large, we treatg as a small perturbation, omitting it altogether. This omission has no effect on the
qualitative picture. We thus consider Eq. (15) with〈a〉 = 0.

The averaged equations have the Lagrangian (modulo higher order terms)

L(XXX,ẊXX, t) = 1
2〈AAA(XXX)ẊXX,ẊXX〉 − 〈v2〉W(XXX), (16)

whereW = (1/2)〈(AAA−1V ′, V ′〉. The potentialW is a function on a two-dimensional torus, and we wish to count
critical points ofW which correspond to the equilibria of the truncated averaged system. SinceV has four critical
pointsxxx = (θ1, θ2) = (πk1, πk2), whereki ∈ {0, 1}. W has four minima. A function on the torus with four minima
must have other critical points, so that we know without any computation that there must be additional equilibrium
positions for the double pendulum. We now determine the least number of these equilibria by a topological argument.

Let m0, m1 andm2 be the respective numbers of minima, saddles and maxima ofW . The Euler characteristic of
the torus is 0= m0 − m1 + m2. Sincem0 = the number of critical points ofV , we havem0 ≥ 4 (we assume the
generic case of nondegenerate critical points). SinceW must have at least one maximum, we havem2 ≥ 1. From
this, we conclude thatm1 = m0+m2 ≥ 4+1 = 5, and thus the number of equilibria ofW is at least 10. For the case
of a double pendulum, we can invoke additional symmetry considerations to conclude thatm0 + m1 + m2 ≥ 12,
Fig. 3. The integers (0,1,2) in Fig. 3 are the Morse indices of the equilibria ofW . For a more detailed discussion of
multiple pendula, we refer to [26,27] and references therein.

3.3. A single pendulum

For the single pendulum the above topological argument predicts at least two additional unstable equilibria,
Fig. 3. Indeed, the anglex with the upward vertical direction evolves according to

`ẍ = (g + a(t)) sinx, 〈a〉 = 0.
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Fig. 3. Topological argument predicts additional equilibria.

Fig. 4. Stability criterion for the inverted pendulum.

Assumea(t) to be like in Eq. (2); then Theorem 2 gives the averaged truncated equation

`ẍ = g sinx − `−1〈v2〉 sinx cosx, (17)

where the error terms have been removed. The effective potentialg cosx − (1/2`)v2 sin2x has four critical points,
assumingg` < 〈v2〉, see Fig. 3. For more details on the dynamics near these equilibria we refer to [28].

3.4. Averaging and non-holonomic systems

Here we point out a perhaps surprising connection: the effective force`−1〈v2〉 sinx cosx in (17) is the force of
a certain nonholonomic constraint.

Consider a non-holonomic system in the plane: a segment4 SB of fixed length̀ , where the velocity of B is
constrained to the line SB, see Fig. 4. As the result of this constraint, if S is guided along a straight line then B
will trace a pursuit curve (also referred to as the tractrix)5 . So far the system is purely kinematic. Let us now
endow B with massm = 1; as a result the mass point B, which moves along a tractrix, is subject to the force
Fcentrifugal = mu2/R = ku2, whereu is the velocity of B,R is the radius of curvature of the tractrix andk is the

4 S for suspension point, B for bob.
5 Defined by the property that all the tangent segments have a fixed length:|SB| = `, where B is an arbitrary point on the curve and S lies on a

given straight line.
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curvature. A simple calculation shows thatu = v cosx, k = `−1 tanx, so that

Fcentrifugal= ku2 = v2

`
sinx cosx. (18)

Remarkably, this coincides with the expression in Eq. (17) obtained by formal averaging. This coincidence is not
accidental: it is a manifestation of a general geometric theorem valid for arbitrary potentials on the line, see [25].

One could restate the observation by saying that aviolently vibrated mechanical system has, as its singular limit,
a nonholonomic system.

3.5. A quick derivation of the stability criterion

A closely related idea gives an instant stability criterion for the inverted pendulum, with virtually no calculations.
Let us think of the segment SB described above as the pendulum with suspension point S and with the bob B. Thus
B is temporarily constrained to the tractrix. We also add gravity to the system, see Fig. 4. As B oscillates along a
short arc of a tractrix, it applies the centrifugal forcek〈u2〉 perpendicular to the tractrix. If this force is large enough
to dominate the destabilizing component of gravity:

k〈u2〉 > g sinx, (19)

then the bob ‘wants’ to accelerate towards the top, so that if released from the constraint, it will do so. Eq. (19) is
the desired stability criterion!

Sincek = `−1x + o(x), Eq. (19) reduces for smallx to

〈v2〉 > `g, (20)

the linearized stability criterion. To obtain even a very special case of Eq. (20), for the piecewise constanta, (cf.
[29]) by a standard method takes at least a page of formulae. Of course our method is not rigorous! – but it does
give the correct answer (even in the nonlinear case) and its validity is proven by the main theorem.

As a closely related observation we recall the well-known stability condition on the Floquet matrixF of the linear
Hamiltonian system cf. Arnold [29]:

|tr F | < 2. (21)

It is remarkable that the linear algebraic condition (21) has the physical interpretation of the centrifugal force
condition (20).

3.6. Curvature of the tractrix in averaged Hill’s equations

Curvature of the tractrix shows up in averaging Hill’s equation

ẍ + q(t, ε)x = 0, 〈q〉 = 0 (22)

with q(t, ε) = εα A(t/ε), whereα > −2 andA(τ + 1) = A(τ) and where we take〈A〉 = 0.
Indeed, the truncated averaged system is, according to Theorem 1

Ẍ + κ〈v2〉X = 0, (23)

whereκ = k′(0), k(x) = curvature of the tractrix generated by unit segments (` = 1).
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3.7. Asymptotics of path integrals and curvature

Hill’s equation (22) can be written in the Hamiltonian form

ẋxx = A(t, ε)xxx, xxx ∈ RRR2; A =
(

0 1
−q 0

)
;

the problem of finding the fundamental solution matrixF , i.e. finding the path integralF(t) = P exp
(∫ t

0A(τ, ε) dτ
)

can be thought of as finding a product of a continuous family of non-commuting symplectic 2× 2 matrices (of
the form eAdτ ). To restate a result from the previous section, the leading term in the asymptotic expression for this
product

F(t) = exp

(
0 1

−κ〈v2〉 0

)
+ · · · .

4. An informal ‘proof’ of Theorem 1

In this section, we give a heuristic derivation of the averaged equations. This argument is a minor extension to
higher dimension of the argument given by Landau and Lifshitz [8] for the one-dimensional potential systems. We
write

xxx = XXX + εβ SSS, β = 2 + α, (24)

whereXXX = 〈xxx〉, the average over the periodT = ε of a, andSSS is still to be determined. The scaling factorεβ is
designed to absorb the smallness of the amplitude, see Eq. (3).

Substituting Eq. (24) into Eq. (1), we get

ẌXX + εβ S̈SS = a
(
fff (XXX) + εβ f ′f ′f ′(XXX)SSS

)
, (25)

where the higher order terms o(aεβ) have been deleted.
Averaging Eq. (25) over a time interval of lengthε gives

ẌXX = 〈a〉fff (XXX) + εβ f ′f ′f ′(XXX)〈aSSS〉, (26)

and we must estimate〈aSSS〉. To that end we subtract Eq. (26) from Eq. (25):

εβ S̈SS = (a − 〈a〉)fff (XXX) + εβf ′f ′f ′(XXX)(aSSS − 〈aSSS〉);
keeping only the leading term in the right-hand side, we obtain

εβ S̈SS = (a − 〈a〉)fff (XXX)

which we use to findSSS. TreatingXXX as the slow variable yields

εβ ṠSS =
∫ t

t0

(a − 〈a〉) ds fff (XXX) ≡ v(t)fff (XXX) (27)

with t0 chosen so that〈v〉 = 0. One more integration gives

εβ SSS =
∫ t

t1

v(τ)fff (XXX) dτ ≡ s(t)fff (XXX),
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wheret1 is chosen so that〈s〉 = 0. Having thus foundSSS (to the leading order), we compute〈aSSS〉 using〈SSS〉 = 0 in
the second step below, integrating by parts in the third step and then using Eq. (27), we obtain

〈aSSS〉 = 1

ε

∫ t+ε

t

aSSS dτ = 1

ε

∫ t+ε

t

(a − 〈a〉)SSS dτ = −1

ε

∫ t+ε

t

v(τ )ṠSS dτ = − 1

εβ

1

ε

∫ t+ε

t

v2(τ ) dτfff (XXX)

= − 1

εβ
〈v2〉fff (XXX). (28)

Substituting the computed expression into Eq. (26), we obtain the desired averaged equations:

ẌXX = 〈a〉fff (XXX) − 〈v2〉f ′f ′f ′(XXX)fff (XXX).

5. Proof of Theorem 1: a normal form reduction

This section contains the rigorous proof to compensate for the heuristics of the last section. It should be noted
that the main theorem gives an explicit expression of the correction. Consequently, in our normal form reduction,
we must keep track of the explicit form of the higher order terms at every step – something not usually done in the
normal form reduction. The order of magnitude happens to be O(δ3). One can, of course, keep track of more terms
and thus obtain an explicit form up to any orderδk. It should also be noted that ifa andfff are analytic, then the
system can be brought to an exponentially small perturbation of an autonomous system [30].

5.1. Rescaling

We begin by writing our second-order equation as a system inRRR2n:{
ẋ = y, x ∈ RRRn

ẏ = εα A(t/ε)f (x), y ∈ RRRn.
(29)

Rescaling the time:

τ = t

ε
, (30)

we obtain, with′ = (d/dτ):{
x′ = εy

y′ = ε1+αA(τ)f (x).
(31)

Rescalingy:

X = x, Y = ε−α/2 y (32)

we obtain{
X′ = ε1+α/2 Y = δY

Y ′ = ε1+α/2 A(τ)f (X) = δA(τ)f (X),
(33)

where

δ = ε1+α/2, (34)

or more compactly,

Z′ = δF (Z, τ), F (Z, τ + 1) = F(Z, τ), Z ∈ RRR2n. (35)
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5.2. O(δ)-averaging

We apply the transformation

Z = z + δh(z, τ ), (36)

to Eq. (33), withh to be defined shortly, obtaining

δhτ + (I + δhz)z
′ = δF (z + δh, τ ) = δF (z, τ ) + δ2 Fz h + EEE1, (37)

where|EEE1| = δ3|Fzz(ẑ, τ )| < cδ3. From this, we express

z′ = δ(F − hτ + δ{F, h}) + O(δ3), (38)

where{F, h} = Fzh − hzF . First, we specifyh so as to make the O(δ)-term time-independent:

F(z, τ ) − hτ (x, τ ) = F̄ (z), (39)

(the bar denotes the time-average), i.e.h(z, τ ) = ∫
(F (z, σ ) − F̄ ) dσ ; this h is τ -periodic. Moreover, we choose

the constant of integration so as to makeh̄ = 0. Explicitly,

h(z, τ ) =
∫ (

Y

Af

)
−

(
Y

Āf

)
dσ =

(
0

Vf

)
, (40)

where6

V (τ) =
∫

A(σ) − Ādσ, V̄ = 0. (41)

With thish the transformation (36) becomes

X = x, Y = y + δV (t)f (x). (42)

Applying this transformation to our system (35), we obtain

z′ = δ(F̄ (z) + δG(z, τ )) + O(δ3), (43)

whereG = {F, h}. As it turns out, theτ -average ofG vanishes, so that the nature of the O(δ3)-terms becomes of
importance. In the next section, we carry out the averaging while keeping track of the cubic terms.

5.3. O(δ3)-averaging

We apply the transformationZ = z + δh(z, t) with h as in Eq. (42) to Eqs. (33):
{

x′ = δ(y + δVf (x))

y′ − δ(Ā − A)f + δVf ′x′ = δAf (x),
(44)

or {
x′ = δ(y + δVf (x))

y′ − δĀf + δ2 Vf ′(y + δVf ) = 0,
(45)

6 This mneumonic notation:V ′ = A, S′ = V suggests the analogy with the position, velocity and acceleration.
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or {
x′ = δy + δ2 Vf (x)

y′ = δĀf − δ2 Vf ′y − δ3 V 2 f ′f,
(46)

or equivalently,

z′ = δF̄ (z) + δ2 G(z, t) + δ3 K(z, t), (47)

whereG andK are specified by Eq. (46). In this form, we have retained the information on the O(δ3) terms. To
averageG, we renamez = (x, y) into Z = (X, Y ) in Eq. (47)7 , and use the transformationZ = z + δ2 h(z, τ )

with

h =
∫

(G − Ḡ) dσ =
∫

(V − V̄ ) dσ

(
f

−f ′y

)
≡ S

(
f

−f ′y

)
, (48)

whereS is defined byS(τ) = ∫
V (σ) dσ , S̄ = 0. More explicitly, the transformation

{
X = x + δ2 Sf (x)

Y = y − δ2 Sf ′(x)y
(49)

takes Eq. (47) into
{

x′ + δ2 Vf + δ2 Sf ′x′ = δy − δ3 Sf ′y + δ2 Vf + δ4 V Sf ′f + O(δ5)

y′ − δ2 Vf ′y − δ2 Sf ′′[x′, y] − δ2 Sf ′y′ = δĀf + δĀf ′δ2 Sf − δ2 Vf ′y − δ3 V 2f ′f + O(δ4),
(50)

wheref ′′[ξ, η] ≡ f ′′(xxx)[ξ, η] denotes the vector-valued second derivative bilinear form inξ, η ∈ RRRn defined by
f ′′[ξ, η] = (d/dλ)(d/dµ)f (xxx + λξ + µη)|λ=µ=0. Combining the powers ofδ, we obtain

{
x′ = δy − δ3 Sf ′y − δ3 Sf ′y + δ4 V Sf ′f + O(δ5)

y′ = δĀf + δ3 SĀf ′ + δ2 Sf ′′[x′, y] − δ3 V 2f ′f + δ3 SĀf ′f + O(δ4).
(51)

This system is implicit in terms ofx′; to overcome this problem, we substitutex′ = δy + O(δ3) into the appropriate
term in Eq. (51):

δ2 Sf ′′[x′, y] = δ3 Sf ′′[y, y] + O(δ5), (52)

so that Eqs. (51) become
{

x′ = δy − 2δ3 Sf ′y + δ4 V Sf ′f + O(δ5)

y′ = δĀf + δ3(2SĀf ′f + Sf ′′[y, y] − V 2 f ′f ) + O(δ4).
(53)

It should be noted that the quadratic terms have averaged out to zero. One more averaging, this time of the cubic
terms (again we renameZ into z, etc.) viaz = Z + δ3 h, whereh = ∫

G − Ḡ gives
{

x′ = δy + δ4 V Sf ′f + O(δ5)

y′ = δĀf − δ3 〈V 2〉f ′f + O(δ4).
(54)

Note that O(δ4)-terms are unchanged. With one final averaging, using〈V S〉 = 0, we obtain
{

x′ = δy + O(δ5)

y′ = δĀf − δ3 〈V 2〉f ′f + O(δ4).
(55)

7 So that we should have rewritten Eq. (47) withZ instead ofz, which we did not do to save space.
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5.4. Return to the original variables

Changing from the timeτ in Eq. (55) to the original timet = ετ and recallingδ = ε1+α/2, we turn Eq. (55) into
{

ẋ = εα/2 y + O(ε4+2.5α)

ẏ = εα/2 Āf − ε2+(3α/2)〈V 2〉f ′f + O(ε3+2α).

Recalling thaty was rescaled in Eq. (32), we rescale back obtaining
{

ẋ = y + O(ε4+2.5α)

ẏ = εα Āf − ε2+2α〈V 2〉f ′f + O(ε3+2.5α)

From the first equation, we getẍ = ẏ + O(ε3+2.5α) and thus, using the implicit function theorem

ẍ = εα Āf − ε2+2α〈V 2〉f ′f + O(ε3+2.5α).

Recalling thata(t, ε) = εα A(t/ε), cf. Eq. (2), we obtain

εα Ā = ā, ε1+αV (τ) = v, (56)

which gives

ẍ = āf − 〈v2〉f ′f + O(ε3+2.5α), (57)

Q.E.D.
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