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A Hamiltonian Look at the Soap Film
A soap film stretched between two rings 

that share a common axis—as in 
Figure 1—has a surface of minimal area 
that, when divided by 2p, is

     
(1)

     

and subject to boundary conditions

        y a r( ) .± =    (2)

Alternatively, (1) is the potential energy of 
the film whose surface tension1 is 1 2/ .p

The Euler-Lagrange equation for the 
minimizer of (1) does not look appealing, 
and I relegate it to a footnote later on. But 
interestingly, the equivalent Hamiltonian 
system turns out to be very symmetric and 
simple. Indeed, the standard definition2 of 
momentum p  yields

1 Surface tension is the force that is 
applied to each side of an incision to hold the 
slit together per the incision’s unit length.

2 In almost all textbooks, the definitions 
of p and H  are pulled out of thin air, although 
they do have a very natural and eye-opening 
motivation [1].

Hamilton’s equations   
are pleasantly simple:3

        
 

(5)
 
Since H = const. along 
solutions, we conclude that 

 By the symmetry of the bound-
ary conditions (2), y y x H=

0
cosh( / ). 

Setting x = 0 in the expression for H  
makes y y=

0 and  Consequently, 
| |H y=

0  and thus
                 
  y y x y=

0 0
cosh( / ).   (6)

Here, y0 must be chosen so that (2) holds.

Some Observations
1. All minimal surfaces spanning two 

rings are dilations of one another. This 
is evident even without (6) from the fact 
that dilations preserve the property of area 
minimization.

2. If the rings are spread too far apart 
for fixed r, the soap film will snap. How far 
is too far? The graphs of (6) fill the sector 
y s x³ | |, where s= …1 996.  is the slope 
of the line through the origin and the tan-
gent to the graph of y x= cosh  (see Figure 
3a). A soap film can therefore span two 
rings iff r a s/ .≥ ≈2  Maximal possible 
distance between the rings is almost equal 
to their diameter!

3. Two critical functions of (1) exist if 
r a s/ >  in Figure 3. However, only one is 

3 In contrast to the messier Euler-Lagrange 

equation:
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physically realizable; the other is unstable. 
If we had somehow managed to give the 
film an initial shape that was close to AnB, 
it would either snap to AmB  or pinch off.

4. Equilibrium shapes are geodesics in 
the metric y ds, and we can think of them 
as rays of light propagating through the 
medium with the speed of light c y=1/ . 
Indeed, the travel time for the light is 
dt ds c yds∫ ∫ ∫= =/  — the same 

expression as the area in (1). So the area 
can be interpreted as either the potential 
energy of the film or as the travel time in 
the artificial optical medium.

5. More generally, if (1) is replaced 

by F y ds
a

b

ò ( ) , then the corresponding 

Hamiltonian becomes H F y= ( )cosq  and 
the momentum is p F y= ( )sin .q

Physical Meaning of H and p
In dynamics, H  and p are the energy and 

momentum. But in our static problem where 
x  is the static counterpart of time, the mean-

ings of H  and p are 
different; instead, they 
are the forces that are 
described in the cap-
tion of Figure 4.

A Gometrical 
Interpretation of 
H and p

Figure 5a depicts 
an alternative inter-
pretation of H  and 
p (here, y x( )  is any 
function). In Figure 
5b, y  is of the form 
(6); as F  slides along 
the x-axis, the length 
| | .FR = const  and the 
velocity of R points at 

F  (proving the latter is left as a challenge).

The figures in this article were provided 
by the author.
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(3)

where q is marked in Figure 1. And by 
a short computation, the 
Hamiltonian  

comes out to be
    
    

     

H y p y=− − =−2 2 cos .q

         
(4)

Trajectories of the Hamiltonian system, 
i.e., the level curves of H , are hyperbo-
las y p2 2− = const. (see Figure 2). And 
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Figure 1. Soap film — a minimal surface that spans two circular hoops.

Figure 2. Trajectories of the Hamiltonian 
system (5). Since H = const. along each tra-
jectory, every solution behaves like a solution 
to a linear system (although (5) is nonlinear).

Figure 4. 4a. H  is the horizontal force that acts on any section of 
the soap “tube,” up to a constant factor that depends on the sur-
face tension. H = const. as a function of x  is the consequence of 
Newton’s first law. 4b. Here, y psin q=  is the cumulative force on a 
portion of the tube that acts in the plane of the section.

Figure 5. 5a. Geometrical meaning of the momentum and the Hamiltonian. 5b. The moving 
segment RF  of constant length | |H  is a “bike” whose “front wheel” F  follows the x -axis; 
the velocity of the “rear wheel” R is aligned with the segment RF  and follows a tractrix, 
the involute of the catenary.

Figure 3. 3a. Graphs of (6) fill the sector. 3b. The definition of slope s x x
x
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−min cosh
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1 996. .... 3c. Points A and B satisfy r a s/ >  and two possible shapes exist for the soap film, 
but only AmB is stable and physically observable. Both curves AnB  and AmB  are geodesics 
in the metric y ds, but only AnB  has a conjugate pair of points a  and b. As such, it cannot be 
minimal; in fact, its Morse index is 1 [1]. In contrast, AmB has no conjugate points and is thus 
a minimizer of the “length” ydsò . The case of r a s/ =  is critical and unstable, as the two 

solutions coalesce into a saddle node of potential energy.


