Reflecting on Reflections

I. When looking at a shiny ball bearing in my outstretched hand, I see the reflection of my head. This tiny image seems to lie somewhere inside the sphere. Where exactly? More precisely, what is the limiting position of the point I (Image) in Figure 1, as $MA \parallel NB$ approaches NB? The answer turns out to be the midpoint of the radius OB.

Figure 1 explains why. We have

$$\angle 1 \stackrel{A}{=} \angle 2 \stackrel{B}{=} \angle 3 \stackrel{C}{=} \angle 4$$

where A holds because the incoming rays are parallel, B is the law of reflection, and C holds because the two angles are vertical. Summarizing, $\angle 1 = \angle 4 \stackrel{def}{=} \theta$, making the triangle *OAI* equilateral and implying that

$$OI = \frac{r}{2\cos\theta} \to \frac{r}{2} \text{ for } \theta \to 0,$$

as claimed. V.I. Arnold's engaging book [1] contains a derivation of this fact, although it

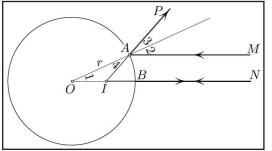


Figure 1. The reflected ray *AP* seems to emanate from the point *I*. And *I* approaches the midpoint of the radius *OB* as the ray *MA* approaches the ray *NB*.

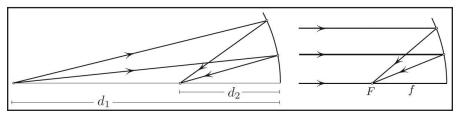


Figure 2. Illustration of the mirror formula. If $d_1 = \infty$, then $d_2 = f$.

takes slightly more than a page of calculation.

II. An even shorter derivation of the image location results from the mirror formula, which states that the source-to-mirror distance d_1 and the image-tomirror distance d_2 satisfy ks -

$$\frac{1}{d_1} + \frac{1}{d_2} = \frac{1}{f},$$
 (1)

where f is the focal length of the mirror (see Figure 2). But setting $d_1 = r$ (the radius of curvature of the mirror at B) yields $d_2 = r$ (see Figure 3), since the rays emanating from the center of curvature col-

lect back at the center (infinitesimally speaking, i.e., replacing the reflector by its osculating circle). In short, (1) yields

$$\frac{1}{r} + \frac{1}{r} = \frac{1}{f},$$

of f = r/2, as claimed.

III. Figure 4 shows how the mirror formula comes out of the reflection law $\theta_1 = \theta_2$. We have

ATHEMATICAL
CURIOSITIES
By Mark Levi $\theta_1 = \angle 3 - \angle 1$, where
 $\angle 3 = ks + o(s)$ (k being
the curvature at B), and
 $\angle 1 = s/d_1 + o(s)$. With the
similar expression for θ_2 , the
reflection law amounts to

$$ks - \frac{s}{d_1} = \frac{s}{d_2} - ks + o(s).$$

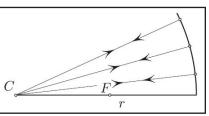


Figure 3. If $d_1 = r$ (the radius of curvature), then $d_2 = r$.

Dividing by *s* and taking the limit for $s \rightarrow 0$ gives¹

```
<sup>1</sup> Retaining the names d_1, d_2 for the limiting values of the distances, in a mild abuse of notation.
```

$$\frac{1}{d_1} + \frac{1}{d_2} = 2k.$$

Substituting $d_1 = \infty$ and $d_2 = f$, we conclude that 2k = 1/f. This proves the mirror formula (1), and reproduces the fact that the focal distance is half the radius of curvature, f = 1/2k = r/2. Incidentally, we proved this for any smooth curve, not necessarily a circle.

The figures in this article were provided by the author.

References

[1] Arnold, V.I. (2014). Mathematical Understanding of Nature: Essays on Amazing Physical Phenomena and Their Understanding by Mathematicians. Providence, RI: American Mathematical Society.

Mark Levi (levi@math.psu.edu) is a professor of mathematics at the Pennsylvania State University.

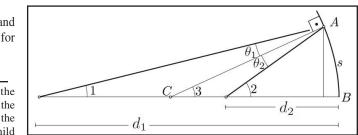


Figure 4. Proof of the mirror formula.