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A Bike Wheel and the Gauss-Bonnet Theorem
While fixing a punctured bike tire one 

day, I asked myself whether a wheel, held 
by the axle and having zero spin, can still 
turn around the axis. To be specific, let us 
make the axle describe a closed cone C, 
coming back to its original position and 
keeping the center of the wheel fixed (the 
cone need not be circular). Despite the fact 
that the wheel never spins (the bearings 
are perfect) it ends up rotated, and through 
the angle that turns out (apologies for the 
pun) to equal the solid angle A C( )  of the 
cone C.

A geometric theorem about cones can 
explain this occurrence. As the wheel’s 
axis traces the cone C in Figures 1 and 2, 
the plane of the wheel remains tangent to 
another cone C *,  the envelope of the fam-
ily of planes normal to the generators of C. 
In fact, the plane of the wheel rolls on C *  
without sliding, as explained in Figure 2 
(this kind of rolling is in complete contrast 
to the conventional way a wheel rolls on 
the ground). One can think of the two cones 
as a bouquet of right angle brackets, as in 
Figure 1. Speaking loosely, if one cone is 
sharp, the other is obtuse. The exact rela-
tionship between the cones turns out to be 
the following:

         AC L C( ) ( ) ,+ =∗ 2p          (1)

where L C( )*  denotes the length of the 
curve of intersection of the cone C *  with 
the unit sphere. A physical “proof” of this 
theorem, along with a rigorous proof, can be 
found in [1]. The physical “proof”—which 

led me to discover (1) in the first place—
uses imaginary springs and vacuum.

According to (1), AC L C( ) ( );= − ∗2p  
Figure 2 shows that the last expression is 
precisely the turning angle of the wheel, as 
claimed.

In fact, the “dual cones” theorem of (1) 
implies a more general fact, the Gauss-
Bonnet theorem – a generalization of the 
fact that the curvature k of a smooth, closed 
non-self-intersecting curve g  satisfies 
k ds
γ

π∫ = 2 .  According to this theorem 

(not stated here in its full generality), for a 
patch S of a smooth surface with a smooth 
boundary g  (see Figure 3), one has

     KdS kds
S∫ ∫+ =

γ
π2 , 	  (2)

where K is the Gaussian curvature and k is 
the geodesic curvature of g.  
According to (2), the bulging 
of S decreases the total geode-
sic curvature of the boundary, 
speaking loosely (only the case 
K > 0  is discussed here).

The Gauss-Bonnet theorem 
boils down to the dual cones theorem (1), as 
outlined in Figure 3. Starting with the sur-

face patch S, we construct the “porcupine” 
cone C of unit normal vectors n  (the Gauss 
cone – Figure 3, right) and consider its dual 
cone C *.  Intuitively, we can think of walk-
ing along g  and carrying a non-spinning 
wheel, keeping its axis (unit vector n ) nor-
mal to S. The wheel’s instantaneous angular 
velocity points along one of its spokes 

n *  (since the wheel is not spinning on its 
axis); these vectors that n *  transported 
to a common starting point form the dual 
cone C *  (Figure 3, right). Now applying 

(1) to these cones leads to the 
Gauss-Bonnet theorem (2).

Indeed, KdS AC
S∫ = ( )  

by the definition of K, and it 
only remains to explain why 
L C k ds( ) .∗ = ∫g  Omitting 

the details, I will only mention that L C( )*  
measures the angle by which n *  rotates 
in the tangent plane sliding along g,  from 
the point of view of the observer walking 
around g.  But n *  and g  (the tangent  to 
g)  rotate by the same amount,  since  the 
angle between them is unchanged after  one 
traversal  of g;  the latter  angle  is k ds

gò  

(by  the  definition  of k),  which  explains 
why k ds L C

g∫ = ∗( )  and why (2) indeed 

reduces to (1).
The wheel provides us with a mechanical 

interpretation of par-
allel transport (each 
spoke undergoes par-
allel transport if the 
wheel does not spin 
on its axis). Further 
details on this can be 
found in [1], and the 
more standard treat-

ments of the Gauss-Bonnet theorem in [2] 
and [3].
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Figure 1. The dual cone C* is the envelope of the family of normal planes to the generators of C.

Figure 2. The plane of the wheel rolls on C*∗without sliding. Indeed, the wheel is (i) tangent to 
C*∗and (ii) the tangency spoke is aligned with the instantaneous angular velocity vector. Hence 
that spoke is instantaneously at rest, meaning zero sliding. One can think of the disk picking 
up wet paint from the cone; the angle of the dirty sector on the wheel is L(C∗), same as the 
angle of the flattened cone.

Figure 3. The Gauss–Bonnet theorem and its connection to (1).
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